必威体育Betway必威体育官网
当前位置:首页 > IT技术

人工智能行业市场分析

时间:2019-08-06 17:12:09来源:IT技术作者:seo实验室小编阅读:58次「手机版」
 

智能分析

人工智能行业市场分析

2018年06月25日 17:48:32 阅读数:8718 标签: A

人工智能行业市场分析

本材料所有内容来源于网络公开资料,引用了较多网络公开行业报告等内容,经整理归纳总结形成本文档,可以查询了解使用,其中有一些数据不具有实时性,仅供参考,主要目的是给出一种行业分析的思路,虽然不是专业的行业分析报告,不能面面俱到,但基本反映出人工智能市场发展概况,仅供学习。

  

2018年6月整理

1   ai概念以及发展历程

1.1  什么是AI

1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。

人工智能的三种定义

第一种,也是最常见的一种,从人工智能研究广受欢迎的成果的角度:大体上来讲,人工智能或者是“创造和研究具备智能行为的机器”(注意:“具备”是怎么解释都行),或者是“创造和研究可以思考的机器”(注意:什么样的“思考”都行)

第二种定义是从人工智能的组成部分或者其想解决的问题的角度:

计算机视觉:如何识别目标?】【语音识别和合成:如何将声音转化为文字或将文字转换为声音】【自然语言处理NLP:如何从语言中提炼有意义的特征?以及如何在生成式语句中赋予有意义的特征?】【知识图谱:如何用一种更实用的方法(例如,分层级的,语义网络)给信息排序】【推理机:如何通过整合碎片信息形成结论?】【规划:如何计划一系列行动,以确保这些行动被执行的同时,能达成特定的目标?】

这个定义差不多就是通用人工智能(强AI 或者全AI)和超级人工智能的概念

斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”

而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”

这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术

个人理解:人工智能是为了解决人类生存和发展的问题,如何更好的生存,更快地向前发展是人类一直以来追求的梦想。

具体来说人工智能就是将人类的意识世界与物质世界连接起来。如何连接,通过机器算法等技术实现机器具有人的意识。这将是跨越性的文明成果,相当于打通了人类的任督二脉。会为未来各个学科的发展打下坚实基础。

1.2  AI发展历程

从1956年正式提出人工智能学科算起,60多年来,取得长足的发展,成为一门广泛的交叉和前沿科学。总的说来,人工智能的目的就是让计算机这台机器能够像人一样思考。

Ø  1997年5月,IBM公司研制的深蓝(DEEP BLUE)计算机战胜了国际象棋大师卡斯帕洛夫(KASPAROV)。大家或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。人工智能始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。

Ø  2012年6月,谷歌研究人员Jeff Dean和吴恩达从YouTube视频中提取了1000万个未标记的图像,训练一个由16,000个电脑处理器组成的庞大神经网络。在没有给出任何识别信息的情况下,人工智能通过深度学习算法准确的从中识别出了猫科动物的照片。这是人工智能深度学习的首次案例,它意味着人工智能开始有了一定程度的“思考”能力。

Ø  2016年3月,谷歌AlphaGo 4:1 战胜围棋世界冠军李世石,开启了人工智能的新纪元。名为 AlphaGo Zero (暂译:阿尔法元)的机器系统仅训练 3 天就战胜了AlphaGo Lee ,比分 100:0名为 AlphaGo Zero (暂译:阿尔法元)的机器系统仅训练 3 天就战胜了AlphaGo Lee ,比分 100:0。

现在AI火起来的原因很大推动就是AlphaGo,虽然谷歌只是为了吸引市场关注,但这也揭开了AI产业快速发展。

2   AI在国内发展概况

2.1  AI在国内发展现状

2.1.1 发展背景

下面采用PEST(政策、经济、社会、技术)分析法进行分析

Ø  政策支持:

2017年3月5日,国务院总理李克强发表2017年政府工作报告,指出要加快培育壮大包括人工智能在内的新兴产业,“人工智能”首次被写入了全国政府工作报告,这意味着人工智能已上升为国家战略。

2017年7月20日,国务院出台《新一代人工智能发展规划》,提出了面向2030年我国新一代人工智能发展的指导思想、战略目标、重点任务和保障措施。《规划》提出坚持科技引领、系统布局、市场主导、开源开放的基本原则和三步走的战略目标,部署构筑我国人工智能发展的先发优势,加快建设创新型国家和世界科技强国。

2017年11月15日,科技部召开《新一代人工智能发展规划》暨重大科技项目启动会,会上宣布了首批四家国家新一代人工智能开放创新平台名单,明确依托科大讯飞建设智能语音国家新一代人工智能开放创新平台。

2017年12月13日,工业和信息化部印发《促进新一代人工智能产业发展三年行动计划(2018-2020年)》,明确了人工智能2018-2020年在推动战略性新兴产业总体突破、推进供给侧结构性改革、振兴实体经济、建设制造强国和网络强国方面的重大作用和具体目标。

2018年3月5日,国务院总理李克强在十三届全国人大一次会议作政府工作报告时表示,要加强新一代人工智能研发应用,在医疗、养老、教育、文化、体育等多领域推进“互联网+”,这是继2017年之后,“人工智能”再次被写入政府工作报告。

Ø  经济增长:

互联网经济继续增长,2015年中国网络经济增长约33%,规模超千亿,2016年人工智能领域投资接近16亿美元,2017年中国人工智能领域投资金额超过580亿人民币,同比增长50%。

Ø  社会环境:

中国科研投入占GDP20%仅次于美国,信息技术投入占“863计划”15.3%,是国家重点揉入领域,中国IT从业人员约有500万,每年50万的毕业生,近五年科研人员保持20%的增长,给行业带来人才红利。

Ø  技术成熟:

目前在视觉领域、语音识别等领域实现技术突破,处于国际领先水平,2017年,用20亿人脸训练可以达到一亿分之一的误识率,国内计算机视觉公司普遍识别率达到99.9%以上,已远超人类97.5%的识别率,科大讯飞在标准场景下语音识别率达到97%。

2.1.2 产业成熟

据统计,2017年中国人工智能核心产业规模超过700亿元,随着各地人工智能建设的逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,年复合增长率将达43.6%。(数据来源前瞻产业研究院《人工智能行业市场前瞻与投资战略规划分析报告》)

各机构预测市场规模参考如下:

机构

2020中国人工智能市场规模

复合增长率

国内机构

CAICT

710亿

48.5%

腾讯研究院

800亿

55-60%

艾瑞咨询

510亿

49.2%

前瞻产业研究院

400亿

43.6%

2018中国IT市场年会

1600亿

26.2%

国外机构

Gartner

160亿$(1040亿)

66%

CB Insights

200亿$(1300亿)

70%

个人理解:国内人工智能产业发展越来越快,已上升到国家战略,国家的推动将形成强大的资源支撑,会在未来十到二十年完全超越国外,不论技术还是市场。换句话说,国家力量是强大的,只要有政策战略支撑,基本没有悬念一定能成为领头羊。

2.2  技术应用成熟度和领先度

当前的人工智能发展浪潮,主要是源于2006年深度学习算法的提出,在数据量和计算能力的基础上实现大规模计算,属于技术性突破。属于超级人工智能的,关于意识起源、人脑机理等方面的基础理论研究仍有待突破。

科技部高新司司长秦勇说:“我国在语音识别、视觉识别、机器翻译、中文信息处理等技术方面处于世界领先地位。中国科学院自动化研究所谭铁牛团队全面突破虹膜识别领域的成像装置、图像处理、特征抽取、识别检索、安全防伪等一系列关键技术,建立了虹膜识别比较系统的计算理论和方法体系,还建成目前国际上最大规模的共享虹膜图像库。”

智能芯片技术也实现了突破。中科院计算所发布了全球首款深度学习专用处理器,清华大学研制出可重构神经网络的计算芯片,比现有的GPU效能提升了3个数量级。

与此同时,我国在人工智能领域的论文数量快速增长。据统计,2007年—2016年,全球人工智能领域论文中,我国占近20%,仅次于美国;深度学习领域的论文总量和引用量均居世界第一。此外,人工智能相关发明专利授权量已居世界第二。

人工智能创新创业也日益活跃,一批龙头骨干企业快速成长。据统计,当前中国的人工智能企业数量、专利申请数量以及融资规模均仅次于美国,位列全球第二。全球最值得关注的100家人工智能企业中我国有27家,其中,腾讯、阿里云、百度、科大讯飞等成为全球人工智能领域的佼佼者,也成为建设国家新一代人工智能开放创新平台的领头羊。

2017年7月5日,百度首次发布人工智能开放平台的整体战略、技术和解决方案。这也是百度AI技术首次整体亮相。其中,对话式人工智能系统,可让用户以自然语言对话的交互方式,实现诸多功能;Apollo自动驾驶技术平台,可帮助汽车行业及自动驾驶领域的合作伙伴快速搭建一套属于自己的完整的自动驾驶系统,是全球领先的自动驾驶生态。

2017年8月3日,腾讯公司正式发布了人工智能医学影像产品——腾讯觅影。同时,还宣布发起成立了人工智能医学影像联合实验室。

2017年10月11日,阿里巴巴首席技术官张建锋宣布成立全球研究院——达摩院。达摩院的成立,代表着阿里巴巴正式迈入全球人工智能等前沿科技的竞争行列。

此外,科大讯飞在智能语音技术上处于国际领先水平;依图科技搭建了全球首个十亿级人像对比系统,在2017年美国国家标准与技术研究院组织的人脸识别技术测试中,成为第一个获得冠军的中国团队。

(1)语音识别技术方面:如百度、Google、Sound Hound 等国际巨头的语音识别准确率在 2015 年便均已超过 90%;以2016 第四届 CHiMEchallenge 结果来看,绝大部分参赛团队在六麦克风条件下识别错误率已低于 7%,国内龙头科大讯飞甚至已降至 2.24%,准确率正在接近 99%的人际交互质变阈值

(2)计算机视觉方面:以 ImageNet 图像识别赛作为观测窗口,其冠军团队的识别错误率自 2015 年下降至人类平均水平以下后,于 2016 年进一步降至 2.99%,印证了计算机视觉技术已趋于成熟。

据近日红杉、真格联合发布的《全球人工智能专利资源发展概况》报告中称,中国在计算机视觉方面的专利已跃居世界第一,占当前全球专利公开数量的 55%

个人理解:我国在语音和计算机视觉方面由于市场需求旺盛,导致市场大量资源涌入,一方面推动了技术成熟,另一方面催生了更多的适用场景。并且中国各种行业体量都很庞大,技术有充分的发挥空间,甚至都可以作为试验场,积累经验,所以在这几方面绝对能实现弯道超车,就像前几年的移动支付一样完全超越国外模式,形成中国特有方式。

3   AI产业链分析

中国人工智能创业公司所属领域分布中,计算机视觉领域拥有最多创业公司,高达35家,紧随其后的是服务机器人领域,有33家,而排名第三的是语音及自然语言处理领域,有18家,智能医疗、机器学习、智能驾驶等也是相比比较热门的领域之一。计算机视觉技术是人工智能的重要核心技术之一,可应用到安防、金融、硬件、营销、驾驶、医疗等领域,而目前我国计算机视觉技术水平已达到全球领先水平,广泛的商业化渠道和技术基础是其成为最热门领域的主要原因。

人工智能产业链可以分为基础设施层、应用技术层和行业应用层。

A基础层,主要有基础数据提供商、半导体芯片供应商、传感器供应商和云服务商。

B技术层,主要有语音识别、自然语言处理、计算机视觉、深度学习技术提供商。

C应用层,主要是把人工智能相关技术集成到自己的产品和服务中,然后切入特定场景。目前来看,自动驾驶、医疗、安防、金融、营销等领域是业内人士普遍比较看好方向。

易观2017年生态图谱

易观2018年生态图谱

个人看法:人工智能产业链三个层次,其中国内创业公司主要集中在应用层,基于国内巨大的市场空间,应用层技术将实现突破性增长,完全超越国外任何一个国家,关键薄弱的地方在于基础硬件芯片和高端传感器上,但是也可以看出国家的重视,但还需要一定时间慢慢积累。

3.1  AI产业链市场

3.1.1 基础层

3.1.1.1    AI芯片

机器智能中,芯片是承载计算功能的基础部件,随着深度神经网络(DNN)的发展和应用,其多层级特点的计算需求已不能通过传统的cpu 来满足,而 GPU 具有适合深度学习所需的并行计算能力,关注度日益提高。除此之外, TPU 以及 FPGA 芯片也成为目前发展较快的人工智能芯片。在芯片上布局的厂商以英伟达、英特尔、高通、ARM、苹果华为等厂商为主。人工智能应用场景将不再是单一类型的终端设备,嵌入式人工智能设备对高性能计算的要求更加急迫,比如专用于自动驾驶汽车的芯片、处理监控视频的交通安防领域计算平台,机器人、无人机、智能家居等产品都需要芯片的支持,这都对芯片公司提出了新的要求,芯片未来将能够提供更为多元化服务。

目前创立于国内的AI芯片初创公司有12家:

寒武纪(Cambricon)

比特大陆(Bitmain)

地平线机器人(Horizon Robotics)

西井科技(westwell lab)

眼擎科技(eyemore)

熠知电子(Think Force)

启英泰伦(Chipintelli

鲲云科技(corerain)

深鉴科技(DEEPHI)

云天励飞(Intellifusion)

触景无限(senscape)

深思考人工智能(iDeepWise)

3.1.1.2    算法系统

深度学习系统一方面需要利用庞大的数据对其进行训练,另一方面系统中存在上万个参数需要调整,因此需要平台对现有数据及参数进行整合,向开发者开放,实现技术应用价值的最大化,因此在芯片和大数据之外,IT 巨头争相开源人工智能平台,,各种开源深度学习框架层出不穷。 2015 年以来,全球人工智能顶尖巨头陆续开源自身最核心的人工智能平台,其中包括:Caffe、 CNTK、 MXNet、 Neon、TensorFlow、 Theano和 Torch 等。Google 开源的TensorFlow 平台训练和导出自己所需要的人工智能模型,然后把模型导入TensorFlow Serving 对外提供预测类云服务,实质上是将开源深度学习工具用户直接变为其云计算服务的用户,现阶段包括百度、阿里、亚马逊在内的云计算服务商都将机器学习平台嵌入其中作为增强其竞争实力和吸引更多用户的方式。同时开放的开发平台将带来下游应用的蓬勃发展。

个人看法:深度学习算法这块还是比较难的一块,关键靠积累,所以各家都在开源自己的学习平台,一来可以让用户接入使用,反过来用户数据可以作为庞大的数据源来训练算法模式,让模式更加智能,所以谁家的平台模型越智能,以后的市场占用率越大,这是一种正向促进作用,这就像底层系统一样,谁占用率越高,后续的市场空间越大。

3.1.1.3    云计算

云计算主要解决算力问题,基于人工智能的超大量数据以及深度算法系统都需要超级计算能力的支撑,传统架构只能依赖于超算中心等形式,效率和成本都不能得到保证,因此目前云计算平台的日益成熟也为人工只能提供了很重要的发展条件。

目前国内外大部分云厂商基本都已经在云平台集成了深度算法平台等产品,结合自有的基础计算能力实现人工智能的赋能。

3.1.1.4    大数据

海量数据是人工智能发展的基础,各类硬件和传感器的数据是未来大数据的核心,伴随着物联网的发展,数据开始以指数级规模增长,大量数据应用到人工智能算法模型的训练中, AI 得以快速发展。而人工智能的技术也快速应用到大数据分析中,通过 AI 挖掘丰富数据背后的价值,数据科学家的部分工作将会越来越自动化,从而可以极大提高生产力。同时,应用于营销、监测等方向的 BI 平台日趋多样,也带动了分析层的不断完善。

在应用层面,随着一些核心基础设施问题的解决,大数据应用层正在快速构建。一方面,专门的大数据应用几乎在任何一个垂直行业都有出现。另一方面,在企业内部,已经出现了各种工具来帮助横跨多个核心职能的企业用户。例如,销售和营销的大数据应用通过处理大规模的内外部数据来帮助找出哪位客户可能会购买、续约或者流失,且速度越来越实时化;客服应用帮助个性化服务;人力应用帮助找出如何吸引和挽留最好的员工等。越来越多的大数据使用者已经无需了解大数据底层部署技术而直接使用。

大数据与人工智能相辅相成,在人工智能的加持下,海量的大数据对算法模型不断训练,又在结果输出上进行优化,从而使人工智能向更为智能化的方向进步,大数据与人工智能的结合将在更多领域中击败人类所能够做到的极限。

关键是数据量级,没有数据训练算法等于白搭,而国内环境最好不过。

3.1.2 技术层

3.1.2.1    计算机视觉

目前,由于动态检测与识别的技术门槛限制,静态图像识别与人脸识别的研究暂时处于领先位置,其中既有腾讯、蚂蚁金服、百度和搜狗这样基于社交、社交、搜索大数据整合的

互联网公司,也有三星中国技术研究院、微软亚洲研究院、Intel中国研究院这类的传统硬件与技术服务商;同时,类似于Face++和FaceID这类的新兴技术公司也在各自专业技术和识别准确率上取得了不错的突破。

近年来,与计算机视觉相关的视频监控和身份识别等行业市场规模均逐渐扩大,伴随着技术的发展,计算机视觉技术和应用逐渐趋于成熟,被广泛应用到金融、安防、电商等场景中,技术进一步实现场景化落地,计算机视觉也成为目前人工智能领域最为火热和应用最为广泛的领域之一。国内企业,尤其是创业公司深耕技术能力,已具备国际领先的技术水平,这些典型企业包括旷视科技、商汤科技、依图科技、格林深瞳、云从科技等。计算机视觉厂商主要走技术和解决方案提供商的路径,通过研究通用型的技术,深耕图像处理和图像分析,提供软硬件全套服务,开放程序接口供其他厂商使用,比如商汤科技、旷视科技。另外一部分厂商走技术应用的路径,将技术接入到不同的领域和场景中,以技术为基础实现场景落地,为用户提供服务,比如特斯联的未来城市人口管理系统。

个人看法:计算机视觉分为两种厂商,一种是传统的摄像头厂商,比如海康,基于自己的硬件实现后台的人工智能,并且将智能开始移植到前端摄像头,会形成智能前端和智能后端相结合的超级平台。另一种是只做后端算法平台,接入摄像头数据源进行分析,就形成了与前者的竞争关系,这样其实很危险,数据源才是关键,掐了你的来源,再厉害的算法也发挥不了作用,所以看目前市场旷视等都在寻求硬件的合作,希望打造端到端智能解决方案。

3.1.2.2    机器学习

2015 年以来,人工智能开始大爆发。 一方面是由于巨头整合了开源平台和芯片,技术快速发展,GPU 的广泛应用,使得并行计算变得更快、更便宜、更有效。 另一方面在于云计算、云存储的发展和当下海量数据的爆发,各类图像数据、文本数据、交易数据等为机器学习奠定了基础。机器学习利用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务,使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。

深度学习(Deep Learning)是机器学习的重要分支,作为新一代的计算模式,深度学习力图通过分层组合多个非线性函数,来模拟人类神经系统的工作过程,其技术的突破掀起了人工智能的新一轮发展浪潮。深度学习的人工神经网络算法与传统计算模式不同,深度学习本质上是多层次的人工神经网络算法,即模仿人脑的神经网络,从最基本的单元上模拟了人类大脑的运行机制,它能够从输入的大量数据中自发的总结出规律,再举一反三,应用到其他的场景中。因此,它不需要人为的提取所需解决问题的特征或者总结规律来进行编程。

深度学习的典型代表就是 Google AlphaGo。而 AlphaGo ZERO 采用纯强化学习的方法进一步扩展了人工智能技术,不需要人类的样例或指导,不提供基本规则以外的任何领域知识,在它自我对弈的过程中,神经网络被调整、更新,以预测下一个落子位置以及对局的最终赢家,并以 100:0 的战绩击败AlphaGo。深度学习使得机器学习能够实现众多的应用,使所有的机器辅助功能成为可能,拓展了人工智能的领域范围。

3.1.2.3    智能机器人

根据《中国服务机器人市场现状调研与发展前景分析报告(2015-2020年)》中的数据,2014 年,我国服务机器人销售额 45.56 亿元,同比增长 34%,特别是工业机器人领域,中国地区工业机器人已占全球三分之一的销售市场;分布地区主要集中在经济较为发达的环渤海(27.3%)及长三角(29.6%)、珠三角地区(32.7%),中部地区(8.9%)和西部地区(1.5%)应用较少。

家庭机器人:优必选、Rokid、公子小白机器人、北冥星眸GalaxyEye、A.I.Nemo、极思维智能科技等。

智能助手:百度、小 i 机器人、图灵机器人、优必选、北冥星眸GalaxyEye、萝卜科技等。

工业\企业服务:新松机器人、博实股份、优爱宝机器人和 Slamtec 等。

国内特别是工业机器人领域将会爆发式增长,全球三分之一机器人销售市场都在中国,中国市场也迎合“智能制造2025”战略进行产业升级,所以这个市场会快速爆发。

3.1.2.4    自然语言处理\知识图谱

多技术融合应用促进NLP技术及应用的发展深度学习、算力和大数据的爆发极大促进了自然语言处理技术的发展。深度学习在某些语言问题上正在取得很大的突破,比如翻译和写作。2014年开始LSTM、word2Vec以及attention Model等技术研究的进展,使DL有了路径在语义理解领域取得突破,并且已经有了明显的进展。对话、翻译、写作新技术成果里都开始逐渐混合入DL的框架。2014-2015年,硅谷在语义理解领域的投资热度剧增。

深度学习能最大程度发挥对大数据和算力资源的利用,语义理解的发展还需要深度学习、搜索算法、知识图谱、记忆网络等知识的协同应用,应用场景越明确(如客服/助理),逻辑推理要求越浅(如翻译),知识图谱领域越成熟(如数据饱和度和标准性较强的行业),技术上实现可能性相对较低。在各种技术融合应用发展的情况下,具备获取一定优质数据资源能力并可结合行业DomainKnowledge构建出技术、产品、用户反馈闭环的企业会有更好的发展机会。

NLP主要应用场景

l  问答系统:问答系统能用准确、简洁的自然语言回答用户用自然语言提出的问题。基本工作原理是在线做匹配和排序。比如 IBM 的 Watson,典型的办法是把问答用FAQ索引起来,与搜索引擎相似。对每一个新问题进行检索,再将回答按匹配度进行排序,把最有可能的答案排在前面,往往就取第一个作为答案返回给用户。

l  图像检索:同样也是基于深度学习技术,跨模态地把文本和图片联系起来。

l  机器翻译:机器翻译的历史被认为与自然语言处理的历史是一样的。最近,深度学习被成功地运用到机器翻译里,使得机器翻译的准确率大幅度提升。

l  对话系统:对话系统的回复是完全开放的,要求机器能准确地理解问题,并且基于自身的知识系统和对于对话目标的理解,去生成一个回复。

自然语言处理(NLP)的研究对象是计算机和人类语言的交互,其任务是理解人类语言并将其转换为机器语言。在目前的商业场景中,NLP技术用于分析源自邮件、音频、文件、网页论坛、社交媒体中的大量数据。市场前景巨大。

NLP应用的最大挑战来自识别人类带有不同模式、语调、发音的语音,并将其转换为可编程语言,其意义在于可与人类实现最基本和最高级的交互。未来,人们可以用口述代替手工输入程序。

目前,NLP主要应用于语音识别,但其终将在多个领域发挥重要作用。更便捷的人机互动将驱动全球NLP市场。另外,客服中心已经开始使用NLP技术为客户提供更好的体验,这对于驱动市场也有积极意义。

国内做大数据服务的公司有较多都是基于自然语言理解来实现解决方案,比如智能推荐用户画像,评论解析等,基于自然语言处理提供数据分析服务。当然还有纯大数据分析的公司,比如纯粹用户行为分析,不涉及自然语言处理,纯粹基于用户数据进行分析。

针对不同行业大数据方案需要垂直积累,在未来会出现每个行业都有特别擅长的公司来做。

3.1.2.5    语音语义识别

类似百度、科大讯飞这样的上市公司凭借着深厚的技术、数据积累占据在市场前列的位置,并且通过软硬件服务的开发不断进化着自身的服务能力;此外,在科大讯飞之后发布国内第二家「语音识别公有云」的云知声在各项通用语音服务技术的提供上也占据着不小的市场空间。

另外,除了科大讯飞,依托中科院自动化所的紫冬锐意和纳象立方以及有着海外背景的苏州思必驰在教育领域的语音识别上占据着领先的位置。

值得注意的是,不少机器人和通用硬件制造商在语音、语义的识别上也取得了不错的进展,例如智臻智能推出的小 i 机器人的语义识别、图灵机器人的个性化语音助手机器人和服务、被 Google 投资的出门问问的软硬件服务。

语音识别:科大讯飞、百度、出门问问、智齿客服、思必驰、云知声、助理来也、京东 JIMI 智能客服、普强科技、捷通华声、紫冬锐意、纳象立方等。

语义识别:科大讯飞、百度、腾讯、智臻智能、智齿客服、助理来也、京东 JIMI 智能客服等。

而在目前的国内语音识别市场上,科大讯飞研发的语音合成产品的市场份额达到 70% 以上,在电信、金融、电力、社保等主流行业的份额更达 80% 以上,开发伙伴超过 10000 家,以讯飞为核心的中文语音产业链已初具规模。

这个行业关注科大讯飞就行,领先所有其他公司,当然个别公司的行业应用和使用场景与讯飞不同,正好是科大讯飞没有重点关注的领域,也给了创业公司不少机会。

3.1.3 行业应用

3.1.3.1    工业制造

人工智能的应用有望实现制造业从半自动化生产到全自动化生产的转变,工业以太网的建立、传感器的使用及算法的革新将实现工业制造过程中所有生产环节的数据打通,人与机器、机器与机器实现互联互通,一方面人机交互更为便利,另一方面机器间将协作办公,既能够精细化操作,还能及时的预测产品需求并调整产能。人工智能将推动机器在制造业中进一步取代人工,提高生产效率并降低生产成本,并通过低成本的个性化生产实现智能定制化服务。中国“智能制造”战略,是中国政府实施制造强国战略第一个十年的行动纲领,未来将渗透到各类制造业中。

工业机器人在国内市场非常大,中国还是稳稳的制造业大国,各种行业的智能制造都将普及,这也是为什么德国一直要来跟中国合作的原因。

3.1.3.2    智能医疗

目前,医疗行业存在医疗资源不足,医疗资源区域分布不均, 医生培养周期长,医疗成本高, 医疗误诊率高,疾病谱变化快等诸多痛点。同时,随着人口老龄化逐渐加剧、 慢性疾病增长,对医疗服务的需求增加。待解决的医疗痛点及逐渐增加的医疗服务需求成为人工智能技术应用于医疗行业的现实需求。

我国医疗问题现状

AI医疗领域市场产业

3.1.3.2.1     医学影像

人工智能应用于医学影像,通过深度学习,实现机器对医学影像的分析判断,是协助医生完成诊断、治疗工作的一种辅助工具,帮助更快的获取影像信息,进行定性定量分析,提升医生看图/读图的效率,协助发现隐藏病灶。

人工智能通过影像分类、目标检测、图像分割、图像检索等方式,完成病灶识别与标注,三维重建,靶区自动勾画与自适应放疗等功能,应用在疾病的筛查、诊断和治疗阶段。目前较为火热的应用有肺部筛查、糖网筛查、肿瘤诊断和治疗等。

“人工智能+医学影像”在阅片速度、 准确度等方面优势明显。 传统的医学影像中, 影像科医生受读片速度的限制,读片量有限,阅片压力大。同时影像科医生多数情况下是凭经验进行判读,容易出现误判情况。人工智能强大的图像识别和深度学习能力有助于解决传统医学影像中存在的工作效率低、准确度低、工作量大的问题,弥补影像科医生不足,提升读片准确度,提高医生工作效率,缓解放射科医生压力。同时技术手段助力疾病早筛,及早为患者发现病灶,提高患者存活率。虽然影像识别在单病种的市场空间不大,但政策推动背景下,影像科、检验科等科室市场化运营,成立病理中心,高端诊断服务将成为影像识别技术的巨大机会。

案例:汇医慧影打造了数字化、移动化及智能化的医学影像和肿瘤放疗平台,构建了影像智能筛查系统、防漏诊系统以及将影像深度应用于肿瘤、心血管、急腹症等单病种的人工智能辅助诊疗系统。持续接入近 400 家医疗机构、其中有北医三院、北京肿瘤医院等数十家三甲医院和一系列高端连锁医疗机构等。

3.1.3.2.2     药物挖掘

人工智能在药物研发上的应用可总结为临床前和临床后两个阶段。临床前阶段:将深度学习技术应用于药物临床前研究,在计算机上模拟药物筛选的过程,包括靶点选择、药效和晶型分析等,预测化合物的活性、稳定性和副作用,快速、准确地挖掘和筛选合适的化合物或生物,提高筛选效率,优化构效关系。临床后阶段:针对临床试验的不同阶段,利用人工智能技术对患者病历进行分析,迅速筛选符合条件的被试者,监测管理临床试验过程中的患者服药依从性和数据收集过程,提高临床试验的准确性。“人工智能+药物挖掘”是将人工智能技术应用于药物临床前研究,快速、准确地筛选合适的化合物或生物,进而缩短药物研发周期、控制研发成本,提高新药研发效率。“人工智能+药物挖掘”主要通过深度学习、自然语言处理技术分析和处理大量的生物科学信息,利用深度学习算法分析信息,找出关联并提出相应的候选药物,进一步筛选对某些特定疾病有效的分子结构。

成立于 2012 年的美国医疗公司 Atomwise,通过 IBM 超级计算机分析数据库,利用深度学习神经网络分析多类化合物的构效关系,评估出 820 万种候选化合物,降低新药研发成本,缩短研发时间。2015 年, Atomwise 基于现有的候选药物,应用 AI 算法, 快速找到能有效控制埃博拉病毒的两种候选药物。

3.1.3.2.3     未来趋势

“人工智能+医疗”面临诸多挑战

首先,患者信任体系建立方面。患者的信任度是人工智能应用于诊疗环境的主要阻碍,如何构建一个合理的伦理道德与保障体系将成为行业重要命题。其次,数据的获取与积累方面,机器学习对于数据质量有一定的要求,人工智能在各领域的发展与数据在体量与广度的积累是人工智能在健康管理领域应用的一大阻碍。最后, 认证与监管方面,较长的 CFDA 认证周期,严格的医疗器械监管,一定程度上阻碍了企业的技术创新、产品落地速度。

人工智能广泛应用于医疗领域,有助于企业降低运营成本,提高运营效率,解决现阶段医疗领域存在的诸多痛点

人工智能广泛应用于医疗领域,有助于解决现阶段医疗资源不足的核心痛点。 移动互联网时代,我国医疗行业现阶段核心痛点从信息不透明转移到了优质医疗资源不足,同时伴随着医疗成本高、人才培养周期较长等问题,人工智能高效计算能力有效提高医疗行业产能。人工智能广泛应用于医疗领域有助于带动基层医疗服务。人工智能+医疗有望成为一种可复制的医疗资源,增加基层医生的诊断精准度。

3.1.3.2.4     虚拟助理

医疗虚拟助理是基于医疗领域的知识系统,通过人工智能技术实现人机交互,从而在就医过程中,承担诊前问询、诊中记录等工作,成为医务人员的合作伙伴,使医生有更多时间可以与患者互动。医疗虚拟助理根据参与就医过程的功能不同,主要有智能导诊分诊,智能问诊,用药咨询和语音电子病历等方向。“人工智能+辅助诊疗”就是将人工智能技术应用于辅助诊疗中,让机器学习专家医生的医疗知识,通过模拟医生的思维和诊断推理来解释病症原因,最后给出可靠的诊断和治疗方案。在诊断中,人工智能需要获取患者病症,解释病症,通过推理判断疾病原因及发展走向,形成有效治疗方案,辅助诊疗的一般模式为:获取病症信息, 做出假设,制定治疗方案

国外最早将人工智能应用于辅助诊疗的是 MYCIN 专家系统。中国从上世纪 70 年代末开始研制基于人工智能的专家系统, 早期有北京中医学院研制的“关幼波肝炎医疗专家系统”, 上世纪80 年代初,福建中医学院与附件计算机中心研制成功高骨伤计算机诊疗系统。 IBM Watson 融合了认知技术、推理技术、自然语言处理技术、 机器学习及信息检索等技术, 是目前“人工智能+辅助诊疗”应用中最为成熟的案例。 IBM Watson 已经通过了美国职业医师资格考试,并在美国多家医院提供辅助诊疗服务, IBMWatson 可以在 17 秒内阅读 3469 本医学专著、 248000 篇论文、 69 种治疗方案、 61540 次试验数据、106000 份临床报告。

2017 年8 月 20 日, 科大讯飞与安徽省立医院联合挂牌“安徽省立智慧医院(人工智能辅助诊疗中心) ”, 这也预示着国内首家人工智能辅助诊疗中心正式投入使用。康夫子推出的智能问诊机器人已经进入到三甲医院, 各种信号预示着,在不远将来利用人工智能就诊时代已并不遥远。

“人工智能+辅助诊疗”服务基于电子处方、医学文献、医学影像等数据,寻找疾病与解决方案之间的对应关系,构建医学知识图谱,在诊断决策层面有效优化医生诊断效率。 未来“人工智能+辅助诊疗”市场空间巨大,尤其在基层常见病诊疗方面能够发挥较大效能,有效提高基层医疗效率,降低医疗成本。

个人看法:解决中国医疗问题,不是一时半会儿能搞定的,依靠AI大数据等新技术从技术层面推动医疗进步,只是在细枝末节动手术而已,一定要国家政策跟得上,从政策上支持,建立较为妥善的医疗体系,推动医院进行技术革新。中国医疗问题大部分集中在农村和三四线城市,特别是大数据共享远程医疗技术应用,需要各方医院配合才能实施,很多问题都是医院层面没有意识到技术创新能带来的收益,很多不愿意配合不愿意学习,只有从意识层面革新医院各层级人员观念,才能将新技术扎实的应用普及。另外还有广大患者的意识,很多患者只相信大医院才能解决问题,造成了很多基层医疗资源的浪费,同时造成大医院饱和无力承担,分级诊疗的路还很长远。

3.1.3.3    智能家居

智能家居是以住宅为平台,基于物联网技术,由硬件(智能家电、智能硬件、安防控制设备、家具等)、软件系统、云计算平台构成的一个家居生态圈,实现人远程控制设备、设备间互联互通、设备自我学习等功能,并通过收集、分析用户行为数据为用户提供个性化生活服务,使家居生活安全、舒适、节能、高效、便捷。智能家居包括家居生活中多种产品,涵盖多个家居生活场景。

2016 年中国智能家居市场规模达到 1140 亿元人民币,据易观千帆监测数据显示, 2017 年第二季度智能家居活跃用户规模达到 4600 万。随着物联网技术、 人工智能技术的发展, 及 90 后婚育潮的到来,智能家居将成为主流的发展趋势。从智能家居发展阶段来看,中国智能家居市场正处于市场启动阶段,尚未进入爆发期, 智能家居产品渗透率较低。目前,智能家居领域依然存在诸多制约因素,如产品本身智能化程度低,多数产品是按既定的程序完成任务,在主动感知和解决用户需求、人机互动等方面达到的体验依然较初级,因此没有形成广泛的用户粘性,消费者对智能家居产品抱有观望态度。而相较于亚马逊的echo和Google HOME,国内还没有成熟的智能家居控制中心,仍处于以手机 APP智能音箱、智能电视、机器人等控制中心的过渡时期。

人工智能技术可以带来硬件背后的软件及服务能力、 与智能硬件相匹配的交互技术。 人工智能+智能家居,有利于形成适配下一代硬件的真正的“智能化”及深入场景体验的个性化计算, 语音及视觉等人机交互技术有助于提升与智能家居产品的交互体验。

语音交流更倾向于日常交流方式: 通过人类的语言给机器下指令,从而完成自己的目的,而无需进行其他操作,这一过程将更为自然。同时语音交互在特定的场景中具有优势,比如远程操纵、在行车过程中等,能够实现在特定场景中解放双手的作用,在家居相对封闭的环境中,语音识别成为主流的人机交互方式。

近年来, 语音交互的核心环节取得重大突破, 语音识别环节突破了单点能力,达到 97%以上的中文语音识别准确率,从远场识别,到语音分析和语义理解技术都日趋成熟,多轮对话的实现等都有利于语音交互取代传统的触屏交互方式,整体的语音交互方案已被应用到智能家居领域中。计算机视觉、手势识别等交互方式成为语音交互的辅助, echo 在新推出的 echo show 产品中已搭载屏幕,而智能电视除语音交互之外,通过计算机视觉分析视频内容,并对内容相关的资料进行下一步操作,包括短视频剪辑、边看边买等,比如 Yi+搭载在天猫魔盒中的“瞄一下”功能。再比如在智能冰箱中,通过计算机视觉实现对冰箱内食品的分析,以及衍生出的用户健康管理和线上购物等功能,多种交互方式将统一在家居生活场景中,从而提供更为自然的交互体验。另一方面伴随着智能家居平台的发展,通过“ifttt”的场景布局,智能家居实现多种家居产品的联动,用户可以自定义多个使用场景,实现定制化、个性化。在人工智能技术的发展将使得个人身份识别、用户数据收集、产品联动在潜移默化中变成现实,未来家居生活场景中将提供千人千面,家庭成员的个性化服务。

找到合适的语音入口是挖掘智能家居背后用户价值的关键。硬件本身具有入口价值,智能音箱,智能电视,家庭机器人等都有可能成为合适的入口。

传统的鼠标操作、触屏操作逐渐向语音交互这种更为自然的交互方式演进,语音交互的未来价值在于用户数据挖掘,以及背后内容、服务的打通,以语音作为入口的物联网时代将会产生新的商业模式。智能音箱、服务机器人、智能电视等智能化产品成为现阶段搭载语音识别技术和自然语言处理技术的载体,作为潜在的智能家居入口,智能音箱、服务机器人和智能电视等产品在提供原有的服务的同时,接入更多的移动互联网服务,并实现对其他智能家居产品的控制。这些产品为付费内容、第三方服务、电商等资源开拓了新的流量入口,用户多方数据被记录分析,厂商将服务嫁接到生活中不同的场景中,数据成为基础,服务更为人性化。“人工智能+智能家居”,带来更好的智能化、更高体验的人机交互.

从最早的 WiFi 联网控制到如今的指纹识别、语音识别,人机交互性能大大提升,智能家居产品正在由弱智能化向智能化发展。而智能家居产品受众也将从尝鲜者转向更为普通的用户,甚至包括老人和小孩。更智能化的技术应用、更复杂的用户结构和更广泛的用户覆盖等因素必将促使智能家居产品趋于简单实用。智能化和人机交互体验的升级将大大扩宽智能家居应用场景, 2016 年,智能安防类产品落地,指纹锁、智能摄像头等产品受到了广泛关注。随着智能感知、深度学习等技术的提升,智能灯光、智能温控等产品也逐渐趋于成熟, 2017 年智能音箱成为爆款产品。 当用户需求不断扩大,产品愈加丰富,智能家居将会渗透到家居生活的方方面面。 智能家居市场将迎来爆发, 2019 年, 智能家居市场规模有望达到 1950 亿元。智能音箱、智能电视、管家型机器人将继续抢占智能家居控制中心,智能家居趋于系统化搭载人工智能的多款产品都有望成为智能家居的核心,包括机器人、智能音箱、智能电视等产品,提供儿童教育、老人陪伴、生活助理、健康监测等服务,智能家居系统将逐步实现家居自我学习与控制,从而提供针对不同用户的个性化服务。

目前智能家居仍处于从手机控制向多控制结合的过渡阶段,手机 APP 仍是智能家居的主要控制方式,但基于人工智能技术开发出来的语音助手、搭载语音交互的产品等软硬件产品已经开始进行市场教育,通过语音控制,多产品联动的使用场景逐步变为现实。而在未来人工智能将推动智能家居从多控制结合向感应式控制再到机器自我学习自主决策阶段发展。

这块前些年都一直在做,至于后续市场有多大,目前也只是估算,要是真的估算下理想状况的话,这个市场肯定是超级大,智能家居,以后连电动车都要算作家用电器之类的了,各类家具产品联网的话,不可想象,当然也不少有安全隐患,想象中的智能比如冰箱会自动提示你今天吃什么,做什么菜,菜谱都给你推送过来,甚至带教学视频,是不是省去了很多麻烦,洗衣机会自动提示你哪些衣物需要定期清洗,扔进去衣服智能判断需要洗多长时间,是适合干洗还是机洗等,就是为了让生活更方便。

3.1.3.4    安防领域

安防应用场景较多,小到身份识别,家居安防,大到反恐国防。现代社会人口流动大,中产阶级逐渐崛起,用户财产逐渐积累,而收入增多同时带来的是风险的加大,用户安全性缺失,安防成为用户的刚需。身份识别手段的多样性对于安防意义重大,因此安防领域对于图像识别的要求更高,也要求更多的手段通过多维度来进行识别,AI 技术的进步可以大大提高身份识别手段的多样性与准确率,对于安防的意义重大,尤其是安防在国防安全领域的应用,具有国家战略意义。

安防行业的发展经历了几个阶段,首先是传统的模拟监控,安防系统用户主要以政府部门为主,随着国民生活水平的提高,数字监控应运而生,安防用户逐渐增多,图像实现数字化储存, 之后又发展到高清化监控,视频监控系统与用户业务系统开始进一步融合。

随着物联网技术的发展,传统简单被动的安防形式已无法满足日常多样化的生活和工作场景,在大数据、人工智能等技术的带动下,安防向城市化、综合化、主动安防方向发展,智能安防成为当前发展的主流趋势,其应用覆盖了金融、交通、教育等行业,囊括银行机构、政府、学校等公共场所和家庭场所。通过无线移动、跟踪定位等手段实现全方位的立体安防,同时与整体城市管理系统、环境监测系统、交通管理系统、应急指挥系统等多个系统相互作用,最终实现万物互联下的全方位安防体系。

从安防手段的应用来看,主要分为政府主导的治安监控、交通监控以及商用的办公楼监控和个人/家用的家庭住宅安防布局。比如利用人脸识别技术针对海关、机场等场所的出入境人员进行监控,防范犯罪分子;在金融信贷、支付等领域通过人脸识别实现个人信息的管理和交易等,以视频、 光学为核心的安防技术已经广泛应用到各行各业,泛安防时代已经到来。

安防一直以来很多人都以为是卖摄像头的,技术进步带来新的机遇,各种基于图片视频的分析需求进一步推动了市场的蛋糕,现在就是硬件设备提供数据源,云计算平台提供算力,图像识别提供业务场景,各有各的市场,已经初步被切分了,所以每个行业都有可能被突然颠覆了,海康大华早十来年肯定也不会想到突然冒出来这么多软件公司来抢生意,以前最多是软件集成商,做些定制外包的活,现如今业务场景驱动,摄像头不再是瓶颈,但是传统安防厂商的优势显而易见,控制了数据源,那简直就是占尽天机,从目前看传统安防厂商技术转型也特别快,所以这个市场虽然大据估计有5K亿规模,但不是谁都进来玩得转的,还得是有积累有经验的对市场反应快的才行。

3.1.3.4.1     图像识别

在视频监控飞速发展的今天,安防产品不断增多,视频监控画面的信息已成海量,远远超过了人力所能进行的有效处理范围。传统采用人工回放录像取证的方式具有效率低下,容易出错的缺点。而人工智能技术恰好具有处理海量信息的能力,也能在技术的基础上实现实时监控、基准判断。

图像识别技术不仅可以实现静态识别,也可以完成动态识别。通过对图像内容的迅速分析,信息分析平台可以监测出可视范围内的人群数量,并且捕捉每个个体的行为动作,形成重点场所及区域的面状布防。

智能视频分析(Intelligent VideoAnalysis, IVA)技术是解决海量视频数据处理的有效途径。 IVA采用计算机视觉方式, 主要应用于两个方面,一是基于特征的识别,主要在于车牌识别、人脸识别。 二是行为分析技术,包括人数管控、个体追踪、禁区管控、异常行为分析等,可以应用到监测交通规则的遵守、周界防范、物品遗留丢失检测、人员密度检测等。 通过对视频内的图像序列进行定位、识别和追踪,智能视频分析能够做出有效分析和判断,从而实现实时监控并上报异常。

3.1.3.4.2     人脸识别

人脸识别是基于人的脸部特征信息进行身份识别的一种识别技术。人脸识别技术被广泛应用于金融、安防、交通、教育等相关领域,主要应用场景包括企业、住宅的安全管理;公安、司法和刑侦的安全系统;自助服务等,刷脸支付、刷脸进站等项目逐渐实现。

人脸识别包括 1:1 的人脸对比和 1: N 的人脸对比。 1: 1 主要指用户真实脸部信息与用户提交的身份证信息进行比对,常见于银行等金融机构和公安系统。 1: N 更常见于刑侦和国家安防领域,能够通过与 faceID 库的对比,快速找到犯罪分子或失踪人员, 1: N 识别精度难度要远远高于 1: 1 人脸识别。厂商也针对1:N的精确度做了技术深耕,百度曾宣布百度大脑的1:N人脸识别监测准确率已达99.7%。

目前,人脸关键点检测技术可以精确定位面部的关键区域,还可以做到支持一定程度遮挡以及多角度人脸,活体检测及红外光识别技术有效阻挡了照片、手机视频等二维人像的作弊行为,使 3D 人脸识别准确率大幅度提升。但双胞胎识别、整容易容前后的识别依然是人脸识别的难点,因此需要虹膜识别等其他识别技术进行补充。

人脸识别技术另一个关键层面在于 face ID 库的建立, 3D 人脸识别数据采集相对困难,采集数据量十分巨大,对计算机计算存储能力要求较高,face ID 库的数据量是人脸识别技术算法训练的基础,数据越高,相应的准确度才会越高。各厂商仍需继续扩充自身的 face ID 库规模。

3.1.3.4.3     国家安防

从下游应用领域看,目前平安城市、智能交通仍然是安防行业最大的下游应用领域, 与政府公安相关的交通、道路视频监控仍然是安防行业最重要的应用环节。

作为关系到百姓日常生活的重要部门,公安及安防行业的信息化、智能化提升迫在眉睫。而伴随着人工智能技术的发展,国家对公安及安防相关部门持续投入并建设大规模的基础设施,同时人工智能技术迭代下,技术厂商需要大量的数据进行算法训练,因此,双方需求实现有效结合,人工智能技术快速在国家安防领域落地开花。

计算机视觉广泛应用于飞机场、火车站等公共场合,在大规模视频监控系统中可实现实时抓拍人脸、布控报警、属性识别、统计分析、重点人员轨迹还原等功能,并做出及时有效的智能预警。且对于抓获有作案前科惯犯帮助很大,目前多应用于公安事前、事中、事后敏感人员布控、失踪人员查找等。安全布防需要消耗大量的警力资源,尤其是运动会、国家会议、演唱会等重点区域和重点活动的安防,而在这其中,已经开始出现人工智能产品的身影,包括实时监测系统、巡逻机器人、排爆机器人等,未来这些机器人也将会更多的替代传统安防体系中重复且低效的工作,节省警力资源。

案例: 2017 年3 月,博鳌亚洲论坛 2017 年年会在海南琼海博鳌召开。 旷视成为大会主要智能视频技术应用解决方案提供商,基于深度学习及计算机视觉技术,为大会安保提供了视频结构化动态侦查系统。

3.1.3.4.4     民用安防

随着网络建设的完善、视频监控的高清化、硬件产品的发展和云端的成熟,安防领域进入快速发展期,从传统前端基础建设,向后端进行深化应用,安防进入智能安防时代。行业化细分明显,厂商推出多行业的综合解决方案和个性化定制方案。

2016 年国家提出开放式住宅小区建设, 安防产品逐步民用化,包括在小区、办公楼等场景下的监控、楼宇对讲、智能家居等产品,民用安防市场发展空间巨大。企业安防及家庭安防关乎到个人的生命财产安全,通过门禁、监控设置的铺设,人口密集区建立起完善的安防体系。而现有的摄像头、智能门锁、闸机等硬件的发展,为立体安防奠定了基础。

案例:2016 年,特斯联陆续为上海包括长宁区、徐汇区、静安区、浦东区、普陀区、嘉定区、闵行区、崇明区在内的 13个辖区的老旧社区进行了智慧改造,成功服务约 4 万个入户单元门,覆盖约 400万人口,占整个上海市中心人口的 25%。其中,长宁区实有人口信息登记率超过 96%,人口普查数量新增实有人口 27.3%, 覆盖的 54 个实施小区实现刑事案件“零发案”;而徐汇区田林十二村安防改造项目也实现了小区发案率降低 90%的效果。

3.1.3.4.5     未来趋势

安防产品不断迭代和创新,立体安防体系

门锁、摄像头等安防产品向智能化发展,而芯片的发展、人工智能技术的发展将推动现有安防产品功能的完善,包括智能 IPC、智能 DVR 和智能 NVR 等产品。设备的优化及组网的灵活有利于安防产品的大规模部署,未来安防体系将更为完善。智能门锁与报警器、监控、门禁等多种安防产品相互配合,共享数据,形成较为立体、实时的安防体系。视频图像的联网调度和信息资源共享,使得安防由被动防范向提前预警方向发展,随着数据资源在不同安防云端的共享,安防产品将实现对危险分子的主动识别,安防行为由被动向主动转变。

智能安防将逐渐云端化

4K 摄像机及 4K 监控系统不断发展,特征识别与视频智能分析应用于安防体系中,提高了安防的时效性、安全性和精准度。随着安防产品的增多及清晰度的增加,安防体系中存储的信息将呈指数级增长,云端成为安防体系的必要基础设施,一方面存储大量的视频及用户信息,另一方面在云端进行数据处理,优化图像识别等算法。未来,安防产品的服务将越来越多,通用型安防产品及服务逐渐兴起,智能化安防产品将以服务模块的方式服务于不同的行业和不同的场景,从而实现资源按需分配,进而满足客户需求,并提高资源利用率

3.1.3.5    社交领域

腾讯AI核心领域:智能助手,客服机器人微信朋友圈信息流(Feeds)广告推送基于自然语言解析、图像识别和数据挖掘技术,通过分析用户朋友圈语言特性,以及朋友圈图片内容,根据对用户收入和消费能力的分析来刻画用户画像,并决定投放何种广告。

有一些品牌需要每天发布大量的帖子。这些品牌还雇佣了大批有影响力的人,通过社交媒体宣传推广他们的产品。他们很难决定哪些内容要突出,哪些内容会更受欢迎。因为分析大量内容是一项繁琐的工作,更多的是靠猜测。

为了避免这种猜测性工作,slack Bots被开发出来。机器人可以预测不同内容是否会受到用户喜欢,还能挑选出那些受欢迎可能性最高的内容。此外,这些机器人还可以在社交媒体上找到类似的内容,并向您展示其受欢迎程度。

2014年,linkedin收购了一家叫做Bright.com的求职公司。 Bright使用机器学习算法来更好地匹配候选人和公司,帮助企业雇用合适的人才,也帮助候选人选择更好的工作机会。

LinkedIn根据历史招聘模式、账户位置、之前的工作经验和职位说明,帮助公司给候选人评分。

3.1.3.6    无人驾驶

伴随着 ADAS 技术的不断更新,推断全球 L1-L5 智能驾驶市场的渗透率会在接下来 5年内处于高速渗透期,然 后伴随半无人驾驶的普及进入稳速增长期。在未来的 2025 年无人驾驶放量阶段后,依赖全产业链的配合而进入市场成熟期。预测到2030年,全球 L4/5 级别的自动驾驶车辆渗透率将达到 15%,单车应用成本的显著提升之外,从L1-L4 级别的智能驾驶功能全面渗透为汽车产业带来全面的市场机会。

按照 IHS Automotive 保守估计,全球 L4/L5 自动驾驶汽车产量在2025 年将达到接近 60 万辆,并在 2025- 2035 年间获得高速发展,在这个“无人驾驶黄金十年”内复合增长率将达到43%,并在2035年达到2100万辆 L4/L5自动驾驶汽车产量,另有接近 7600 万辆的汽车具备部分自动驾驶功能,同时会带动产业链衍生市场的大规模催化扩张。

根据独立市场调研机构 StrategyEngineers 的预测,L4 高度自动驾驶等级下,自动驾驶零部件成本约在 3100 美元/车,其中硬件占比 45%,软件占比 30%,系统整合占比14%,车联网部分占比 11%。按照全球1亿辆量产规模计算,理想假设所有车辆全部达到 L4 高度自动驾驶水平,那么全球自动驾驶零部件市场规模在2020年将达到3100亿美元。

“无人汽车大脑”——AI 的智能程度决定了无人驾驶的可靠性, Google、 特斯拉、 百度等机构持续研发无人驾驶技术。虽然出行环境变化多样,当前的技术水平还无法直接应用于日常上路。但在出行过程中,人工智能技术已经开始发挥作用,包含行车记录仪、测距仪、雷达、传感器、 GPS 等设备的 ADAS系统,已经可以帮助汽车实时感知周围情况并作出警报,实现高级辅助驾驶,保证用户出行安全。在特定场景下,无人驾驶已初步实现,例如驭势科技在广州白云机场已开始试运行低速无人驾驶。

3.1.3.7    金融领域

AI 在金融领域的应用主要集中在投资决策辅助、信用风控与智能支付三个方面。

在投资决策辅助方面,人工智能技术将协助金融工作者从数以万计的信息中迅速抓取有效信息,并进一步对数据进行分析,利用大数据引擎技术、自然语义分析技术等自动准确地 分析与预测各市场的行情走向,从而实现信息的智能筛选与处理,辅助工作人员进行决策。 另一方面人工智能也能帮助金融机构建立金融风控平台,进行风控管理,实现对投资项目的风险分析和决策、个人征信评级、信用卡管理等。 在智能支付领域中, 利用人工智能的人脸识别、声纹识别技术可实现“刷脸支付”或者“语音支付”。

按金融业务执行前端、中端、后端模块来看,人工智能在金融领域的应用场景主要有智能客服、智能身份识别、智能营销,智能风控、智能投顾、智能量化交易等。本文简要分析智能身份认证、智能风控、 智能投顾三类应用场景,并以“人工智能+金融”综合应用人工智能理财进行详细分析。

3.1.3.7.1     智能身份认证

身份认证主要通过人脸识别、指纹识别、声纹识别、虹膜识别等生物识别技术快速提取客户特征。近年来,金融机构对远程身份识别、远程获客需求日益增加, 而人脸信息凭借易于采集、较难复制和盗取、自然直观等优势,在金融行业中的应用不断增加。 人脸识别的流程主要包括:人脸检测、脸特征提取人、人脸匹配三部分。

人脸识别可实现客户“刷脸”即可开户、登录账户、发放贷款等,让金融机构远程获客和营销成为可能。在互联网金融领域,“刷脸”也可以应用到刷脸登录、刷脸验证、 刷脸支付等诸多领域。同时,人脸识别亦可以成为银行安全防控手段的有效选择。银行安防的难点之一是在动态场景下完成多个移动目标的实时监控,人脸识别技术在银行营业厅等人员密集的区域可有效实现多目标实时在线检索、比对,在 ATM 自助设备、银行库区等多个场景下都可应用。

案例: 2015 年马云在德国汉诺威消费电子、信息及通信博览会上演示了蚂蚁金服的扫脸技术,并完成一笔淘宝购买,支付宝先后将人脸识别技术应用于用户登录、实名认证、找回密码、支付风险校验等场景,智能身份识别日益成熟。

3.1.3.7.2     智能风控

人工智能技术可以助力金融行业形成标准化、模型化、智能化、精准化的风险控制系统。 帮助金融机构、金融平台及相关监管层对存在的金融风险进行及时有效的设别和防范。 人工智能应用于金融风险控制的流程主要包括: 数据收集、行为建模、 用户画像及风险定价。

智能风控可以协助金融监管机构防范系统性金融风险。 人工智能+大数据分析技术,可以助力金融监管机构建立国家金融大数据库,防止金融系统性风险。

消费金融领域, 自然语言处理、知识图谱及机器学习等人工智能技术, 可提供更深度、有效的借款人、企业间、行业间不同主体的多维有效信息关联, 并深度挖掘企业子母公司、产业链上下游合作伙伴、竞争对手、高管信息等关键信息,减少认知偏差,降低风控成本。

在信贷领域,智能风控可以应用到贷前、贷中、贷后全流程。 贷前,助力信贷机构进行信息核验、信用评估、实现反欺诈; 贷中, 可以实现实时交易监控、资金路径关联分析、动态风险预警等;贷后,可以助力信贷机构进行催收、不良资产等价等。

案例:天机大数据风控是融 360 联合十多家征信合作伙伴一同推出的一款风控服务平台,致力于为融 360 合作的贷款机构提供一站式、全流程、高效率、低成本的风控服务。 针对 5 万元以下的个人信用贷款申请,天机系统包含一组模型,会根据身份认证、还款意愿和还款能力三大维度,给申请贷款的用户进行信用评分,依据分值来决定是否应放款。有效提升了贷款审批速度和贷款获批率,并降低了贷款的逾期率。

3.1.3.7.3     智能投顾

智能投顾(robo-advisor)是指通过使用特定算法模式管理帐户,结合投资者风险偏好、财产状况与理财目标,为用户提供自动化的资产配置建议。

根据美国金融监管局(FINRA)提出的标准,智能投顾的主要流程包括客户分析、资产配置、投资组合选择、交易执行、组合再选择、税收规划和组合分析。客户分析主要通过问询式调研和问卷调查等方式收集客户的相关信息,推断出客户的风险偏好以及投资期限偏好等因素,再根据这些因素为客户量身定制完善的资产管理计划,并根据市场变化以及投资者偏好等变化进行自动调整。智能投顾将有效降低投融资双方信息不对称与交易成本。

智能投顾发展的两大核心要素:一是自动化挖掘客户金融需求技术,帮助投资顾问更深入地挖掘客户的金融需求,智能投顾产品设计更智能化,与客户的个性化需求更贴近,弥补投资顾问在深度了解客户方面的不足;二是投资引擎技术,在了解客户金融需求之后,利用投资引擎为客户提供金融规划和资产配置方案,提供更合理、个性化的理财产品。

案例: 摩羯智投是招商银行“实时互联、智能服务” 的核心理念的应用实践, 依据“目标-风险”策略, 机器推荐基金组合配置,作为国内银行业首例“人+机器”的智能化投资服务模式,市场影响巨大。

3.1.3.7.4     人工智能理财

人工智能理财是通过算法和数据模型驱动,以用户偏好、财务状况等为基础,围绕客户生命周期的精细化管理、投资策略建议、客户服务、投后跟踪等一系列自动化、智能化、个性化的理财人工智能决策系统。

人工智能理财是 AI 在金融领域的综合应用,以用户金融需求全生命周期为核心

人工智能理财涉及到智能客服、 智能投顾、智能风控等多个场景,是人工智能技术在金融领域的综合应用之一。人工智能理财以用户金融需求全生命周期为核心, 有利于保障用户参与度、提升生命周期中每个节点转化率,提升企业运营活动的必要性和有效性。

人工智能理财产业结构相对清晰,标准的操作流程推动投资服务工具化

人工智能理财产业结构相对清晰,且相互渗透门槛较高,从类别上,包括提供数据资源、计算能力和硬件平台的基础层、着重于算法、模型及应用开发的技术层;而连接众多业务场景,实现数据及技术价值的商业化的应用层,形式有机器人投顾、虚拟个人助手、虚拟客服、语音输入法、人脸识别等,未来三年将迎来发展黄金期。

在人工智能理财中,多种厂商发挥不同的价值。基础 IT 供应商集中在基础技术层,成为金融公司处理日常需要的科技如邮件系统、财务系统等的供应商,在核心数据层,数据类服务商能够结合客户的消费偏好、资产、教育背景等,整合海量数据对其进行分析,从而实现全方位信息的获取、预测客户的消费趋向,并进一步向客户推荐合适的金融产品。在商业应用层,人工智能理财服务商成为金融产品销售提供第三方服务的科技平台。

目前,人工智能理财已经形成不同的服务模式, 主要有利用AI 技术进行客户识别分析,进行产品匹配的服务模式,以及利用 AI 技术进行产品组合优选的服务模式。

随着越来越多人工智能理财机构出现,人工智能理财在用户操作流程上有一定的趋同性。对用户理财认知及基本信息进行测评是应用服务开展的基础,进而在用户选择不同投资方向后,根据计算结果做出个性化推荐

人工智能理财发展趋势

目前,中国人工智能理财已经形成清晰的产业架构、 不同服务模式及较为标准的操作流程,但结合目前中国国内金融理财市场的情况,人工智能理财也面临诸多挑战。例如国内理财产品与美国相比丰富程度不足,除了要考虑资产配置还要考虑交易时间和成本。加上金融市场特殊的环境开放性程度以及信息不对称和实时高频的交易等特征,应用到人工智能领域的计算能力和大数据能力需要经得起多方磨合。

未来,随着人工智能理财市场的进一步成熟,人工智能理财拓宽用户服务边界的速度将进一步加快。主要表现在:第一,高品质理财服务门槛进一步降低,理财服务将覆盖更大体量普通投资者。相对于传统的互联网金融对金融行业有限的改造,人工智能理财能够凭借算法的力量进一步降低成本;在服务创造高毛利的客户群体时,加入人工智能的理财服务有利于拓展可服务的人群,加深服务深度。第二,个性化、智能化成为服务用户的起点。 人工智能理财机构通过采用人工智能技术,不再去和竞争对手拼渠道、拼价格,而是通过感知每个人的具体需求、推出千人千面、个性化的智能理财服务,在支付验证、及时响应、理财意向、风险调整、算法交易、银行贷款、风控分析、客户分析、行业解决方案等等多种方面对 C 端用户和企业用户提供更加全面的服务。未来,在人工智能理财领域,单一生态循环被打破,开放平台成趋势。人工智能理财对于精确数据的诉求会愈发强烈,驱动着人工智能理财开放平台的建立,各个巨头们将打破单一的生态循环,将更多的渠道和产品纳入自己的开发平台之中,以便获取更多的数据去帮助 AI 多维度的理解用户需求,并做出相应的匹配,从而完成对数据的整合、加工。当应用层面更多用户以及更多的用户的需求被满足后,流量等附加价值显现,又能够对整个开放提供更多的有价值数据,从而形成更加良性的生态循环。

3.1.3.7.5     未来趋势

金融服务企业向更高阶智能化方向演进

金融行业具有重复动作多、数据分析工作多以及安全隐患大的突出特点。如资料归档、业务咨询、固定业务办理等简单、重复、固定程序的工作,会耗费较多的人力与物力;在与数据分析相关的业务工作中,需要对客户数据、行业数据进行优化整合,提供更为精准的金融服务;在安全工作中,各类银行网点等金融系统的风险监控不容忽视。随着人工智能技术的发展,人工智能在金融行业的应用逐渐深入,未来,金融服务企业将向更高阶智能化方向演进,语音交互、计算机视觉、 机器学习等人工智能技术将应用到智能客服、 身份识别、风险控制、精准营销、量化投资、理财等各个金融服务环节。

金融科技能力保障数据资产价值挖掘,将成金融企业核心竞争力金融在风险定价、流程规范等多方面具有明显的数字化特征,经营过程中产生的数据资产无疑是各企业的基础性资产,在此基础上,通过量化金融模型以及智能化算法可以更好判别用户真实的风险承受水平、预期收益目标以及投资风格偏好等市场痛点,满足当前用户对新型金融服务的诉求,发力金融科技会是移动金融平台的核心竞争力所在。用户的交易数据、行为数据、资产数据、基本信息、位置信息等成为金融机构主要的用户价值,金融科技将通过人工智能技术提供隐私保护、智能投顾、身份认知、手机防盗量化技术等技术服务。

随着移动互联网的普及,线上交易行为增多,用户信用资产内涵逐渐拓宽, 覆盖大量线上用户群体的平台将拥有独特优势,企业发力金融科技的最终目的是以数据为基础、技术为手段,协助优化金融行业的成本结构和收入结构,而企业的金融科技能力首先会在内部应用成型,未来进一步在开放平台策略下进行服务输出。

3.1.3.8    智能教育

它的研发初衷是为了把人从简单、机械、繁琐的工作中解放出来,然后从事更具创造性的工作。教育人工智能的使命应该是让教师腾出更多地时间和精力,创新教育内容、改革教学方法,让教育这件事变得更好。

目前人工智能在教育领域的应用技术主要包括图像识别、语音识别、人机交互等。比如通过图像识别技术,人工智能可以将老师从繁重的批改作业和阅卷工作中解放出来;语音识别和语义分析技术可以辅助教师进行英语口试测评,也可以纠正、改进学生的英语发音;而人机交互技术可以协助教师为学生在线答疑解惑,去年媒体曾报道美国佐治亚理工大学的机器人助教代替人类助教与学生在线沟通交流竟无学生发现,说明了人工智能在这方面的应用潜力。

除此之外,个性化学习、智能学习反馈、机器人远程支教等人工智能的教育应用也被看好。虽然目前人工智能技术在教育中的应用尚处于起步阶段,但随着人工智能技术的进步,未来其在教育领域的应用程度或将加深,应用空间或许会更大。

在教育行业,人工智能不仅被用来节省教师人力、提高教学效率,而且可以驱动教学方式的变革。以人工智能驱动个性化教育为例,收集学生作业、课堂行为、考试等数据,对不同学生的学情进行个性化诊断,并进一步为每个学生制定有针对性的辅导和练习,从而实现因材施教,这已成为教育人工智能探索个性化教育的一个方向。但是实现人工智能引领个性化教学的一个关键点是数据的采集与分析。

1)实现个性化因材施教,让你从此“爱上学习”

在当前教育和培训领域中,最迫切需要解决的问题是大班制教学模式,尤其是针对企业公司、学校教师、体制内公职人员等的培训领域,实施大班教学很难顾及到每位学员学习时间、原有知识水平和理解能力,出现“一刀切”,教学效果难以保证。AI+教育,可以实现对每位学员在线学习数据的收集及深度挖掘、分析,实现从数字化到数据化,对学生进行个性化分析,鉴定出学员学习方式、重难点、兴趣点等内容,实现以学定教及个性化教学,创建学员身边的虚拟“专属教师”,让学员在学习过程中“爱上学习”。

AI阅卷批改作业

面对庞大的考生规模和多种多样的考试,专家和老师阅卷成为一个独特的景观。从传统的纸笔阅卷到网上阅卷,再到今天的机器智能阅卷,AI可以轻松解决繁重复杂的阅卷难题,大大提高阅卷的效率和质量。

通过对试卷进行数字化扫描、格式化处理, 转换成机器可识别的信号,机器就能按阅卷专家 的评判标准,进行自动化阅卷,还可以自动检测出空白卷、异常卷,并给出最终的评阅报告及考 试分析报告。原来三个月的工作,现在一周就能 完成,而且更准确、公正。 中国教育部考试中心对“超脑计划”的阅卷 工作进行了验证,结果是,在“与专家评分一致 率、相关度”等多项指标中,机器均优于现场人 工评分。 除了代替人工阅卷,人工智能还可以帮老师做批改作业、备课等重复枯燥的工作,不仅节省 大量时间,还可以减少工作量。 语音识别和语义分析技术的进步,使得自动 批改作业成为可能,对于简单的文义语法,机器 可以自动识别纠错,甚至是提出修改意见,这将会大大提高老师的教学效率。 今年两会期间,科大讯飞董事长刘庆峰在提 案中提到,科大讯飞的英语口语自动测评、手写 文字识别、机器翻译、作文自动评阅技术等已通 过教育部鉴定并应用于全国多个省市的高考、中考、学业水平的口语和作文自动阅卷。而基于国 家“十三五”863“基于大数据的类人智能关键技术与系统”阶段性成果构建的“讯飞教育超脑” 已在全国 70% 地市、1 万多所学校应用。国外也有多个智能测评公司和实践案例。 GradeScope 是美国加州伯克利大学一个边缘性的 产品,它旨在简化批改流程,使老师们更专注于教学反馈。目前有超过 150 家知名学校采用该产 品。MathodiX 是美国实时数学学习效果评测网站,算法会对每一步骤都进行检查、反馈。美国教育考试服务中心(ETS)是世界上最大 的私营非盈利教育考试及评估机构,已经成功将 AI 引入 SAT 和 GRE 论文批改,同人类一起扮演评卷人角色。 计算机科学家乔纳森研发了一款可进行英语 语法纠错的软件,不同于其他同类型软件的是, 它能够联系上下文去理解全文,然后做出判断, 例如各种英语时态的主谓一致,单复数等。它将提高英语翻译软件或程序翻译的准确性,解决不 同国家之间的交流问题。 虽然人工智能可以阅卷、批改作业,但诚如《信 息时报》刊发的《推广“机器人老师”可为广大 教师减压》一文所言:教育需要尊重“异质思维”, 同样的问题,学生会给出差异化、个性化的答案; 目前“机器人老师”在阅卷、批改作业的时候会 有明显的局限性,可能更适用于客观题却不适用于主观题。 不可否认,最初机器是用来辅助人工教学的, 未来的趋势则是人辅助机器,而这个过程会一次 次重塑考、学、教、管的服务流程。未来,当进 入强人工智能和超人工智能时代,机器人更像是老师甚至在许多方面超越老师。

机器人老师

城乡、区域教育鸿沟,择校问题,学区房问题, 都是教育教学资源不均衡导致的,归根到底是优 秀教师的稀缺,而智能教育机器人则是解决这一问题的有力工具。“机器人老师”不仅有助于解 决师资不足和师资结构不合理等难题,还能大大缓解社会矛盾,促进教育公平。 目前国内已涌现出像魔力学院这样的创业公 司。几年前魔力学院创始人张海霞从北大毕业时, 她的毕业论文是国内最早对人工智能教学进行研究的学术论文,同时在上大学期间,她就已经是 新东方出国留学部最好的英语老师。这种雄厚的 技术和教学背景,让她成为国内最早一批人工智 能领域的创业者。 “与大多数互联网教育领域的产品不同,魔 力学院从一开始,我们要解决的问题就是用人工 智能机器替代老师进行讲课。曾经有很多投资人建议我们妥协一下,暂时用真人老师讲课,后面 再一步步地进化到人工智能老师,但我们从来没 有妥协。”张海霞说。 直到 2016 年 3 月,魔力学院第一个商业化的 版本上线,企业开始有了第一笔收入,成为全球在人工智能老师这个领域第一家产品上线的创业 公司,也是第一家实现了持续收入和盈利的创业 公司。至今,在人工智能老师这个领域,魔力学 院的相关产品仍然是惟一能从教、学、练、测各个维度提供人工智能老师教学的公司。 目前在新东方也开始这样的实验,教室里没 有人类老师上课,机器人将重要知识点经过搜集 和教学设计后,用非常幽默的方式向学生传授,从课堂效果来看,“学生很愿意听”。 新东方教育集团董事长俞敏洪认为,未来 10 年内,教师七成教学内容一定会被机器取代。 不过,缺少人类老师的教学必然不完整,因为课 堂教学不光是把知识点告诉学生,更需要对学生开展知识融合、创造性思维、批判性思维等能力 训练。对于这些思维方式的训练教学,机器人老 师还无法胜任。“未来的课堂将是机器人智能教未来 10 年内,教师七成教学内容一定会被机器取代。不过,缺 少人类老师的教学必然不完整,因为课堂教学不光是把知识点告诉学生,更需要对学生开展知识融合、创造性思维、批判性思维 等能力训练。 07/2017 New Economy Weekly/ 新经济导刊 / 27 学、老师情感和创新能力的发挥及学生学习的三 者结合。” 除了民办教育在积极引入机器人老师,我国 的“福州造”教育机器人已在部分城市的学校开 始“内测”,今后有望向全国中小学推广。这款 教育机器人除了帮助老师朗诵课文、批改作业、 课间巡视之外,还能通过功能强大的传感器灵敏地感知学生的生理反应,扮演“测谎高手”角色。 一旦和“学生机”绑定,可更清楚地了解学生对 各个知识点的掌握情况。 对于机器人老师,国外早有应用。2009 年, 日本东京理科大学小林宏教授就按照一位女大学 生的模样塑造出机器人“萨亚”老师。“萨亚” 皮肤白皙、面庞清秀,皮肤后藏有 18 台微型电机, 可以使面部呈现出 6 种表情。她会讲大约 300 个 短语,700 个单词,可以对一些词语和问题做出 回应,还可以学会讲各种语言。“萨亚”给一班 10 岁左右的五年级学生讲课,受到新奇兴奋的孩子们的极大欢迎。 教育是塑造灵魂的特殊职业,教师是人类灵 魂的工程师,面对的都是活生生的具有不同个性 情感的学生,在价值观塑造和创新思维启发方面, “机器人老师”有着明显的局限性。尽管机器人 老师不知疲倦,知识渊博,能平等地对待学生,加上它的特殊身份能激发学生的学习兴趣和动 力,然而机器人永远无法完全替代“真正的人类 教师”。 当老师们从繁重的重复性工作中解放出来, 实际上可以将更多的时间和精力花在富有创造性 的工作上。比如培养学生的素质和情商,激发学生对学习的热情,鼓励学生独立思考,形成自己 的价值观和思想体系,成为有美好人格和创新能 力的个体。 实际上,老师充当的是一个引导者、启发者 的角色,老师做的应该是“准备环境 - 引导孩子 - 观察 - 改进环境 - 再引导 - 退出 - 再观察”。极 少干预和不断引导,让孩子能最大限度地拥有独 立性、专注度和创造力。机器人进课堂是大势所趋。不久的将来,人 类老师将负责进行情感、心理、人品、人格上的 健康教育和品德教育,以及各类知识的融会贯通、 学习方法的引导、创新能力的培养。而知识教育这部分,将会以“机器换人”的形式让渡给人工 智能。这将对老师提出更高的要求,因为除知识教育外的这些教学内容,需要由真正有能力的老 师来传授。“老师要避免被机器取代,就要先避 免自己成为机器。” 可见,教师需要快速适应现代化教学需要, 熟练使用各类领先科技产品,提升综合素质,这 将决定教师本人的去与留,更是教育希望与未来的关键所在。

个性化教育

因材施教在我国已有 2000 多年历史,但在我国应试教育大环境下,根据学生不同的认知水平、 学习能力以及自身素质来制定个性化学习方案, 真是说易行难。当传统思想与尖端科技相结合, 因材施教的可行性有了大幅提高。人工智能介入后,个性化教育有两条实现途径。

一是构建知识图谱。构建和优化内容模型, 建立知识图谱,让学生可以更容易地、更准确 地发现适合自己的内容。国外这方面的典型应用是分级阅读平台,推荐给学生适宜的阅读材 料,并将阅读与教学联系在一起,文后带有小 测验,并生成相关阅读数据报告,老师得以随 时掌握学生阅读情况。 Newsela 将新闻与英语学习融为一体。通过 科学算法衡量读者英语水平,抓取来自《彭博社》 《华盛顿邮报》等主流媒体的内容,由专人改写成不同难度系数的版本。LightSail 也是相同 应用,不过它的阅读材料是出版书籍,它收集 了适合 K12 学生阅读的来自 400 多个出版商的 8 万多本图书。 2015 年 底Newsela 用 户 量 超 过 400 万, LightSail和纽约市教育局、芝加哥公立学校、 丹佛公立学校等机构达成了合作,而目前我国 没有如此规模、与官方达成合作的个性化阅读 学习平台。 二是自适应学习。人工智能可以从大量的学生中收集数据,预测学生未来表现,智能化推 荐最适合学生的内容,最终高效、显著地提升 学习效果。当一个学生阅读材料并回答问题时, 系统会根据学生对知识的掌握情况给出相关资料。系统知道应该考学生什么问题,什么样的 方式学生更容易接受。系统还会在尽可能长的 时间内保留学生信息,以便未来能给学生带来 更多的帮助。 在美国乔治计算机学院,有一门课叫“人 工智能概论”。这门课是艾萨克·格尔教授创建的。他有一个教学助理叫吉尔。这个课程的 特点是以问答方式授课,学生提问,老师和助 教回答。第一年就有大约 1000 多名学生参与,提出了超过 1 万个问题,其中 40% 的问题是由 助教吉尔回答的。让学生惊奇的是,吉尔竟然是一个机器人,而且教了他们整整一个学期。 格尔教授采用 IBM 沃森界面,创建了这个 AI 驱动的 BOT 交互系统,也开发了整个课程的内 容和形式。 《未来地图》一书作者吴霁虹认为,用人工智能指导教学,没有标准内容,每个学生都可 以个性体验。从学生界面到 AI 提供的个性化定 制学习材料,AI 需要对学生进行学习画像,然 后转变为学习代理,再进入学习内容管理系统, 编制成学习材料。AI 的这个过程,经过频繁的 互动,将会变得越来越快速智能。 人工智能还可以对教学体系进行反馈和评 测。试想一个场景,当某学生在查询自己期末成绩的时候,他看到的不仅仅是一个简单的分数, 还附有一份“诊断报告单”。通过这份报告,他不但可以了解到自己知识点和能力点的掌握情 况,还能看到对自己的优势、不足的科学分析。 这就是借助人工智能的帮助,通过对学生学习成 长过程与效果的数据“画像”,诊断出学生知识、 能力结构和学习需求的不同,以帮助学生和教师 获取真实情况。学生可以清楚看到问题所在,学习更高效;教师也可对症下药,选择不同的教学 目标和内容,实施不同的教学方式,进一步提高 教与学的个性化、精准化和有效性。

以上内容摘录网络上某公开论文,目的是能让各位深入了解下人工智能在教育行业具体能做什么,其实就三大块:

1, 自动批改作业试卷;

2, 教师助理;

3, 个性化学习课程(因材施教)。

3.1.3.9    其他领域

搜索、电商、可穿戴设备、虚拟助手、法律预判

3.1.3.9.1     搜索领域

智能推荐,搜索词语义理解

3.1.3.9.2     电商

自动定价,智能客服(阿里点小蜜,京东JIMI),智能无人仓库,智能推荐,通过计算机视觉技术实现以图搜图,AI评论解析。

3.1.3.9.3     可穿戴设备

智能手表/手环等

3.1.3.9.4     虚拟助手

个人助理类的,结合硬件和软件实现

3.1.3.9.5     法律助理

总体来说,AI在法律领域主要做的有两大类:

律师工具:搜索引擎、资料管理、自动化合同分析,文档处理等。

面向消费者:法律咨询、帮客户了解快速连接合适的律师。

律师工具:

BM Ross:全球人工智能律师,目前,由IBM研发的世界首位人工智能律师ROSS通过使用Watson提供的API,结合自己研发的算法,帮助处理公司破产等事务,日前就职于纽约Baker & Hostetler律师事务所。如同Watson,用户提出一个问题后,ROSS的工作过程是这样的:

l  利用自然语言处理能力去理解问题的语法及文本。

l  通过评估问题所有可能的含义来确定问题是什么意思

l  从数以百万计的文档中找出数以千计的可能答案。

l  收集材料并根据评分算法给所有的材料进行评分。

l  根据支持材料的评分对所有的答案进行排名。

l  提供一个解决方案。

虽然Ross被称为全球首位人工智能律师,但做的其实还是律师助理的活儿。

法狗狗:应用于刑事案件的案情预测系统

2016年成立的北京真泽信息科技有限公司推出了一款产品——法狗狗,一套应用于刑事案件的案情预测系统。该系统具体操作过程是这样的:选定罪行分类(财产安全、人身安全、交通安全等)——输入伤亡人数、案发地点等简单信息,获得案例预测(预测刑期、缓刑可能性、涉及法条等)以及类似案例。据了解,法狗狗基于同类案件匹配、法院判决书数据整理归纳等方式进行预测。法狗狗的思路正是:对于人类说不清楚的问题,输入大量的标注数据,通过机器学习等算法得到测量值。

传统的律所、银行中的AI助手,除此之外,许多大大小小的律所与银行等均在AI领域有所尝试。

据金融时报报道,英国的一家律所——年利达律师事务所开发了一款电脑程序Verifi,可以筛查14家英国及欧洲监管登记机构的材料,为银行核查客户姓名。该公司表示,这一程序一夜时间可以处理几千个名字。合伙人Edward Chan介绍说,“以前,受过训练的初级律师检索一位客户的姓名平均需要12分钟。”

此前,彭博社报道曾有报道,摩根大通开发了一款金融合同解析软件COIN。这款软件上线半年多,经测试,原先律师和贷款人员每年需要360000小时才能完成的工作,COIN只需几秒就能完成。而且,不仅错误率大大降低,它还不用放假。

俄罗斯最大的银行——Sberbank 最近宣布他们将推出一个机器人律师,这个机器人的任务就是处理各种投诉信件。这项创新将导致大约 3000 名在银行工作的专家被炒鱿鱼。

世界四大会计师事务所之一的德勤也于2016年3月宣布,将与人工智能企业Kira Systems合作联盟,将人工智能引入会计、税务、审计等工作中,代替人类阅读合同和文件。

面向消费者——法律咨询

DoNotPay:与用户聊天的律师机器人

世界上第一款律师机器人DoNotPay便是面向消费者,其操作过程是这样的:

用户们登录DoNotPay网站,点击自动服务系统,网页会跳出即时聊天软件,用户在软件上就可以与机器人聊天,用户们可以问他们相关的问题。问完之后,这个机器人会将用户输入的信息转化成一个法律声音文件,然后会根据这些问题和声音文件来判断是否有上诉的依据,再一步步引导用户进行上诉。

理脉智能:将关联案件分类、整理,可视化

近年来,国内法律领域创业公司也大多是法律服务平台。

理脉智能,一家法律大数据创业公司,其平台上收录了国内外权威司法数据和行业公开数据,运用语意分析和机器学习技术对关联案例进行清洗、分类、结构化,并以可视化图标的方式呈现。理脉首页搜寻引擎入口,简单输入查询关键字,即可查询企业、律师、律所、法院、法官在司法活动中的足迹,并以可视化透明呈现案件在多个维度与企业、律师、律所、法院、法官的关联。

法律谷:人工智能法律咨询机器人

2016年10月成立的法律谷,推出了针对普通消费者的人工智能法律咨询机器人。具体操作过程为:当事人用口语化的语言输入纠纷,然后系统便会根据相似案例推送合适的律师,当事人在查看律师报告后,觉得合适后便可以联系律师。

到目前为止,应用于法律的人工智能仍属于“工具”的范畴,与传统的“产品”并无二致。人工智能的作用将法律工作中的常规环节实现自动化,以使律师专注于客户服务中比较复杂、高价值的领域。

3.2  国内各生态市场分析

3.2.1 基础技术层

3.2.1.1    基础设施平台

基础设施

OS

云计算

物联网平台

代表公司

Android、ROS、windows、图灵机器人、DureOS、Alexa

BAT、华为、Azure、UCLOUD、青云、金山云、七牛云

特斯联、机智云、深智云、云智易、艾拉物联、青莲云、氦氪

3.2.1.2    AI芯片

AI芯片可以有多种分类方式,按照芯片的类型可以分为CPU、GPU、FPGA、ASIC,还有为人工智能而生的类脑芯片,按照应用场景又可以分为训练、推断芯片,还有语音AI芯片和视觉AI芯片之分。

深度学习的应用这么多,但全都基于传统的通用处理器,如CPU/GPU。例如几年前的一个老故事是,谷歌花了上万个CPU去训练猫脸识别模型。未来想要扩展至人脑规模的神经网络,不论是CPU还是GPU,都不足以支撑。

历史上通用处理器就好几次面临类似的瓶颈,而催生了新型专用处理器。PC时代,CPU做图形渲染能力不够,于是就诞生了GPU。信号处理能力不够,于是就有了DSP。同样,在智能时代,我们也会需要有一类专门的智能处理器芯片

公司

产品

功能

百度

DureOS智慧芯片

搭载DureOS操作系统,赋能机器人机对话

寒武纪

智能处理器

MLU智能芯片

面向神经网络处理器

地平线

旭日

征程

智能驾驶

智能摄像头

中星微

星光智能一号,神经网络处理器

用于人脸识别

深鉴科技

深度学习处理单元

语音处理、图像处理

耐能

NPU

影像识别、深度学习

杭州国芯

GX8010

语音处理、图像处理

西井科技

DeepSouth

语音识别

启英泰伦

视觉识别大数据分析

比特大陆

深度神经网络推理预测和训练

3.2.1.3    大数据服务

大数据服务

代表公司

国双、天云大数据、数据堂、明略数据、易观、Talkingdata、创略数据、达观数据等

3.2.1.4    视觉传感器

图:易观报告摘录

激光雷达禾赛科技、巨星科技、slamtec、robosense、北科天绘、Quanergy、Velodyne LiDAR、大族激光、中海达、擂神智能、北醒、数字绿土

毫米波雷达:博世、隼眼科技、Continental、DENSO、行易道科技、Delphi、森思泰克、智波科技、cheng-tech、ZF TRW、HELLA、Autoliv

监控摄像头:海康威视、大华、宇视科技、Tiandy、Towe、汉邦高科、泰科、亚安科技

自动驾驶摄像头:索尼、Hella、Panasonic、博世、ZFTRW、大陆、OmniVision、Mobileye

3D体感:Microsoft、苹果、华捷艾米、凌感、Vidoo、Orbbec。

3.2.2 应用技术市场

中国人工智能创业公司所属领域分布中,计算机视觉领域拥有最多创业公司,高达35家,紧随其后的是服务机器人领域,有33家,而排名第三的是语音及自然语言处理领域,有18家,智能医疗、机器学习、智能驾驶等也是相比比较热门的领域之一

计算机视觉

语音识别

自然语言理解

机器学习/知识图谱

腾讯优图、阿里

百度、搜狗

依图、商汤

旷视、云从

格灵深瞳、深醒

Viscovery、飞搜

图谱、极限元

触景无限、科葩

科大讯飞、NUANCE

微软、百度

搜狗、捷通华声

腾讯、阿里

思必驰、云知声

SoundAI、Rokid

出门问问、普强信息

搜狗、百度

微软、阿里

腾讯、图灵机器人

小i机器人、三角兽

来也、智言科技

竹间智能

蓦然认知

百度、Sogou

腾讯、阿里

微软、第四范式

iPIN

Ø  计算机视觉和智能语音语义一方面在硬件端变革人机交互方式,另一方面在软件领域实现对图像、语音、文本数据的分析和理解

Ø  涉及线下场景的AI通用技术公司已经从技术提供方案变为软硬件结合的解决方案提供商,整合上下游硬件和软件深耕垂直领域布局产业链

Ø  涉及线上场景自然语言理解和机器学习主要通过积累行业业务数据,优化技术方案,来构建行业壁垒

计算机视觉技术是人工智能的重要核心技术之一,可应用到安防、金融、硬件、营销、驾驶、医疗等领域,而目前我国计算机视觉技术水平已达到全球领先水平,广泛的商业化渠道和技术基础是其成为最热门领域的主要原因。人脸识别是计算机视觉领域应用最为热门领域,2016 年,旷视拿到建银国际和富士康集团的 1 亿美金融资。一向低调的依图同年将业务从车辆、安防,向医疗、城市数据拓展。

图像识别代表企业:

百度、搜狗、三星中国技术研究院、微软亚洲研究院、Intel中国研究院等。

人脸识别代表企业:

旷视科技、腾讯优图、蚂蚁金服、FaceID、汉王科技、三星中国技术研究院、微软亚洲研究院、中科奥森、深圳科葩、linkface、SenseTime 等。

动态视觉检测代表企业:

格灵深瞳、东方网力、Video++ 等。

2011年至2015年,这是属于中国 CV(计算机视觉)公司的五年,这是属于他们的时代。

图:艾媒咨询报告

3.2.3 行业应用市场

应用领域

代表企业

应用领域

安防

旷视、商汤、云从、依图、特斯联、海康

大华、格灵深瞳、东方网力

智能监控/安保机器人

金融

旷视、商汤、捷通华声、科大讯飞、云从、依图、蚂蚁金服、因果数、第四范式、爱财集团、普林科技、同盾科技、邦盛科技、极融、誉存科技、百融金服、阿里云、百度云、小视科技、现金巴士、维氏盾征信、外滩征信、冰鉴科技、BBD数联铭品、聚信立、米么金服、MarketinOS、力美科技、数据米铺、DOMOB多盟、卖达数字、百分点、京纬数据、卖达数字、时趣、芝麻科技、宏原科技、诸葛io、美数科技、personal Capital、积木盒子、蓝海智投、阿里旗下蚂蚁聚财、慧理财、微量网、平安一账通、量财富、弥财、阿法金融

智能营销、征信反欺诈、智能投顾、只能量化交易、身份识别、智能客服、智能投研、智能风控

医疗

华大基因、iCarbonX、腾讯觅影、搜狗明医、天智航、康夫子、万里云、汇医慧影、医渡云、羽医甘蓝、医拍智能、推想科技、图玛深维、体素科技、E诊断、迪英加、智成科技、视见医疗、雅森科技、海鹅科技、联影医疗、汇医慧影、深睿医疗、PereDoc、伦琴医疗、人和未来、希氏异构、康夫子、博实股份、妙手机器人、璟和技创

医疗机器人、影像识别、智能诊断、虚拟助理

机器人

科沃斯机器人、优必选机器人、360、京东、Slamtec、Roobo、Canbot、Geek+、 ARTrobot、Rokid、小米、出门问问、小鱼在家、擎朗、快仓、智言科技、达闼科技、库柏特、极智嘉科技、深之蓝、梅卡曼德机器人、克路德机器人、智齿科技、真机智能、海默机器人、乐聚机器人、扬天科技、ROOBO、优爱智合、普渡科技、进化者机器人、云问机器人、AICRobo、megarobo、工匠社、云迹科技、珞石机器人、若贝特机器人、上海元趣、灵伴即时、墨子AI、拓野机器人、北冥星眸、萝卜科技、游尔机器人

家庭机器人、智能助理、智能客服、工业机器人、物流机器人、安防机器人

无人驾驶

驭势、Momenta、奇点汽车、蔚来、图森、易航智能、Minieye、景驰科技、Smarter Eye、Zong Mu、极自、饮冰科技、极目智能、清智科技、智行者科技、Roadster.ai、Drive.ai、图森为了、FMC汽车、未来黑科技、踏歌智行、中科慧银、斑马数智、极奥科技

家居

百度、阿里巴巴、小米、搜狗、出门问问、360、云知声、科沃斯机器人、Emotibot、三角兽、图灵机器人、Rokid、思必驰、声智科技、机智云、地平线机器人、毫米科技、渡鸦科技、云丁科技、西默科技、lifesmart、百芝龙智慧科技

教育

科大讯飞、高木、作业帮、iPIN、优必选、学霸君、小猿搜题、嘿哈科技

客服

小i机器人、图灵机器人、三角兽、追一科技、智言科技、灵伴科技

4   国内典型厂商产品介绍

4.1  寒武纪

全球第一个成功流片并拥有成熟产品的智能芯片公司,目前AI芯片可以分为云端(服务器端)和终端(移动端)芯片的两大使用场景。

大多研发AI芯片的公司都侧重于其中一端,诸如英伟达、英特尔、IBM和谷歌主要侧重于云端芯片的研发,而ARM、地平线和深鉴科技主要侧重终端芯片的开发。在此值得一提的是,寒武纪在终端和云端方面均有入局。

历史上通用处理器就好几次面临类似的瓶颈,而催生了新型专用处理器。PC时代,CPU做图形渲染能力不够,于是就诞生了GPU。信号处理能力不够,于是就有了DSP。同样,在智能时代,我们也会需要有一类专门的智能处理器芯片,而寒武纪公司就是这个领域的先行者。

4.1.1 产品介绍

寒武纪产品分三大类:

4.1.1.1    智能处理器IP

l  Cambricon-1A

高性能硬件架构及软件支持

兼容Caffe、Tensorflow、MXnet等主流AI开发平台,已多次成功流片

国际上首个成功商用的深度学习处理器IP产品,可广泛应用于计算机视觉、语音识别、自然语言处理等智能处理关键领域。

l  Cambricon-1H8

低功耗版

面向视觉应用

针对视觉领域设计的深度学习处理器IP产品。与寒武纪1A相比,在同样的处理能力下具有更低的功耗和面积,可广泛应用于安防监控、智能驾驶、无人机等领域。

l  Cambricon-1H16

更高性能版

完备的通用性

1A的升级版本,能效比得到数倍提升,拥有更广泛的通用性,可广泛应用于计算机视觉、语音识别、自然语言处理等智能处理关键领域。

4.1.1.2    MLU智能芯片

MLU100是寒武纪科技推出的第一款智能处理板卡产品,搭载了MLU100芯片,为云端推理提供强大的运算能力支撑。与传统架构处理器相比,MLU100在处理人工智能任务时可获得巨大的性能功耗比提升,是真正适合人工智能的处理器。

MLU100智能处理卡的等效理论峰值运算能力为166.4 TOPS(INT8),可通过双槽位的PCIe Gen3 x16集成于现有的各类服务器机架和工作站中,支持被动或主动两种散热方式,典型功耗为80W。MLU100智能处理卡支持最高32GB的DDR4内存容量,并具备ECC数据校验功能。

4.1.1.3    软件开发环境

Cambricon NeuWareSDK

该软件开发平台构建于寒武纪发明的人工智能专用指令集之上。这意味着,基于寒武纪软硬件平台,人工智能产业界将构建一个完整的、基于底层自主指令集的智能新生态,方便开发者进行跨平台应用迁移,并为端云一体的人工智能处理打下坚实基础。

4.1.2 融资情况

4.1.3 市场估值

是国内AI芯片领域第一个独角兽初创公司估值20亿美元

4.2  地平线机器人

Horizon Robotics地平线机器人是一家主打机器人专用“大脑”芯片研发的科技公司,致力于打造“机器人时代的Intel” 地平线是全球领先的嵌入式人工智能核心技术和系统级解决方案提供商,致力于为自动驾驶汽车、智能摄像头等终端设备安装“大脑”,让它们具有从感知、交互、理解到决策的智能嵌入式人工智能芯片。

4.2.1 产品介绍

旭日1.0处理器

面向智能摄像头,具备在前端实现大规模人脸检测跟

踪、视频结构化的处理能力,可广泛用于智能城市、

智能商业等场景

征程1.0处理器

面向自动驾驶,可同时对行人、机动车、非机动车、

车道线、交通标识牌、红绿灯等多类目标进行精准的

实时监测和识别,实现FCW/LDW/JACC等高级

别辅助驾驶功能。

4.2.2 解决方案

4.2.2.1    智能驾驶

4.2.2.2    智慧零售

四大场景

通用智能基础库

4.2.2.3    智慧城市

4.2.3 融资情况

4.2.4 市场估值

根据爱分析中国企业级服务估值榜估值为9.8亿

4.3  优必选

优必选成立于2012年,是一家集人工智能和人形机器人研发、平台软件开发运用及产品销售为一体的全球性高科技企业。2008年,优必选从人形机器人的核心源动力伺服舵机研发起步,逐步推出了消费级人形机器人Alpha系列、STEM教育智能编程机器人Jimu和智能云平台商用服务机器人Cruzr等多款产品。2018年,优必选估值50亿美元。3-5年,成为中国智能机器人领袖企业,5-10年,打造全球智能服务机器人优秀品牌。

4.3.1 产品介绍

在To C业务线上,优必选拥有三大系列产品:消费级人形机器人Alpha系列、STEM教育智能编程机器人Jimu、与迪士尼合作的IP机器人。

在To B业务线上,优必选在2017年推出了智能云平台商用服务机器人Cruzr,据称目前销量上万台,最大规模的采购案例是今年1月份2150台Cruzr机器人在居然之家百城千店上岗,而居然之家也参投了优必选的本轮融资。

上过春晚的机器人

四大产品线:

Star Wars:与迪士尼合作的星球大战第一军团冲锋队员机器人,第一军团冲锋队员机器人“白兵”,它具备增强现实(AR)、语音控制、面部识别、警戒巡逻等功能

Alpha:人形消费级机器人阿尔法,教育娱乐智能机器人

Jimu: STEM教育智能编程机器人

Cruzr:智能云平台商用服务机器人,基于云计算的机器人操作系统,Cruzr可个性化定制软件功能,可设计多角度广告信息,实时视频监控,一键集控多台设备,可更好为您处理繁琐事情,优化人力资源,提高工作效率,为企业及个人提供超乎想象的智能服务。一月份,2150台优必选Cruzr机器人正式在居然之家百城千店上岗工作,这是人类历史上人工智能机器人第一次大规模的进入线下新零售。针对智能零售,Cruzr机器人可以提供商场信息问答查询、商铺精确导航指引、移动广告营销推广、购物区域安防监控等多项服务。

双足机器人Walker:正在准备量产

4.3.2 融资情况

优必选成立于2012年,到目前为止总共完成了5轮融资:

1、2013年获正轩投资、力合华睿投资的2000万元天使轮融资,公司估值达1亿元;

2、2015年获启明创投投资的1000万美元A轮融资,公司估值也随之达1亿美元;

3、同年,优必选又获科大讯飞900万美元A+轮融资,估值翻了3倍,达3亿美元;

4、2016年4月鼎晖资本、中信金石共同向优必选注资1亿美元,这一举动也使优必选估值达到了10亿美元;

5、第五次融资就是5月份优必选再次获得腾讯领投,多方跟投的8.2亿美元C轮融资,估值翻了5倍,达到了50亿美元。

4.3.3 市场估值

2018年5月份优必选再次获得腾讯领投,多方跟投的8.2亿美元C轮融资,估值翻了5倍,达到了50亿美元。

4.4  云从

这是一家专注于计算机视觉的人工智能企业,孵化于中国科学院。创始人周曦博士师从美国工程院院士、计算机视觉之父—Thomas S. Huang 黄煦涛教授。其带领的团队曾在计算机视觉识别、图像识别、音频检测等国际挑战赛中7次夺冠。

4.4.1 产品介绍

旗下有金融、安防、交通、新零售、社区、教育等业务板块

4.4.1.1    智能硬件

人脸互动大屏终端

人脸互动大屏终端主要应用与银行大堂、展厅、商超、机场等场所,吸引用户参与互动娱乐,同时进行微信推广与营销。

活体检测

红外双目检测:能够同时实时采集近红外和可见光两种图像,检测是否为活体。

活体动作检测:引导客户规定时间内完成制定的动作,检测是否为活体。

红外双目检测:

能够同时实时采集近红外和可见光两种图像,检测是否为活体。

活体动作检测:引导客户规定时间内完成制定的动作,检测是否为活体。

小云智能门禁

【性能参数好】

识别速度1秒内,识别距离0.2到2.2米

【可扩展性强】

可实现分布式系统部署

【安全性好】

支持身份证+人脸匹配唯一认证

【门禁功能】

加密通信,防拆报警 

【管理软件】

功能强大,自动升级产品规格

【个性化定制】

批量建库,深度定制Logo、主题、头像、语音提示、广告内容和广告形式大库检索笔记本

云从动态人脸业务应用平台服务器

【业界领先水平】

人脸抓拍与验证速度快,准确率高,对人脸变化、光线、表情有较好的适应性;

【功能完善】

提供人脸验证功能和系统管理等功能;

【易操作】

与传统的自助设备操作类似,极易上手,操作简单;

【易集成】

提供跨平台的接口、集成难度低、集成速度快;

【一体化】

一体化的设计,部署及其方便。

云从静态人脸业务应用平台一体机

【快速命中目标人员】

系统支持百万级人像大数据1:N秒级检索,快速命中目标人员;

【快速建模注册】

系统支持对外部人像库进行多任务批量读取,支持自建人像库的批量导入和一键建模;

【适应低质量人脸图片】

针对性优化的算法对角度、光照、表情、模糊等影响人脸识别性能的因素具有极强的容忍性,能够解实战过程中照片质量低下的问题,突破了其他类似系统对输入图片严格要求的局限性;

【软硬件一体化】

一台静态人脸业务应用平台一体机集成了,用户管理、权限控制、人像库、特征库、人脸识别、人脸比对等功能,降低了部署复杂度,有利于基于硬件优化算法,提高了系统稳定性;

【快速对接第三方平台】

系统对外提供webapi接口,支持二次开发,可集成到第三方平台;

【完善的业务管理能力】

提供方便快捷的业务管理工具;

【支持多种客户端】

提供多种浏览器访问和移动端接入。

云从静态人脸业务应用平台服务器

【强大的管理能力】

可同时接入管理超过50台静态人脸检索节点服务器,方便系统的动态扩展。

【强大的底库扩展能力】

配合云从静态人脸检索节点服务器,可提供上亿级人脸底库扩展能力,满足不同业务规模用户的使用需求。

【强大的并发查询处理能力】

可以根据不同用户的并发需求进行堆叠扩展,最大支持超过100路客户并发的查询访问能力。

【灵活机动的业务扩展】

架构设计灵巧,业务扩展灵活,方便各行业特色业务扩展。

【完善的权限管理功能】

系统具有灵活多样的权限管理能力,方便客户根据管理的需求进行相关权限的划分,提升管理能力,做好系统管控。

【软硬件一体化】

软硬一体的静态人脸业务应用平台服务器,降低了部署复杂度,有利于基于硬件优化算法,提高了系统稳定性。

【快速对接第三方平台】

系统对外提供webapi接口,支持二次开发,可集成到第三方平台。

【支持多种客户端】

自动适应多种浏览器,多种分辩率的访问。

云从静态人脸检索节点服务器

【快速命中目标人员】

系统支持百万级人像大数据1:N秒级检索,快速命中目标人员。

【快速建模注册】

系统支持对外部人像库进行多任务批量读取,支持自建人像库的批量导入和一键建模。

【适应低质量人脸图片】

针对性优化的算法对角度、光照、表情、模糊等影响人脸识别性能的因素具有极强的容忍性,能够解实战过程中照片质量低下的问题,突破了其他类似系统对输入图片严格要求的局限性。

【软硬件一体化】

一台静态人脸检索节点服务器集成了人像库、特征库、人脸识别、人脸比对等功能,降低了部署复杂度,有利于基于硬件优化算法,提高了系统稳定性。

【堆叠式扩展运算量】

配合云从静态人脸业务应用平台服务器,可支持多台设备堆叠,最大可支持亿级人脸底库的接入能力,满足不同规模的人像检索需求,方便后期扩容;系统对外提供webapi接口,支持二次开发,可集成到第三方平台。

云从动态人脸业务应用平台一体机

【强大的并发能力】

可同时接入多路摄像机,轻松处理多人同时出现的视频。

【实时扣取最佳人脸】

实时从视频中扣取人脸,并利用丰富的扣取策略,记录质量最好的人脸。

【实时动态建模】

具备实时建模能力,快速处理视频中扣取的每一张人脸,避免人脸照片积压,保证报警的及时性。

【适应低质量人脸图片】

针对性优化的算法对角度、光照、表情、模糊等影响人脸识别性能的因素具有极强的容忍性,能够解实战过程中照片质量低下的问题,突破了其他类似系统对输入图片严格要求的局限性。

【软硬件一体化】

一台动态人脸业务应用平台一体机集成了用户管理、权限控制、视频解析、人脸扣取、实时布控、人像库、特征库、人脸识别等功能,降低了部署复杂度,有利于基于硬件优化算法,提高了系统稳定性。 

【快速对接第三方平台】

系统对外提供webapi接口,支持二次开发,可集成到第三方平台。

【支持多种客户端】

提供多种浏览器访问。

云从动态人脸布控节点服务器

【强大的并发能力】

可同时接入多路摄像机,轻松处理多人同时出现的视频前端人脸特征提取和动态布控。

【实时扣取最佳人脸】

实时从视频中扣取人脸,并利用丰富的扣取策略,记录质量最好的人脸。

【实时动态建模】

具备实时建模能力,快速处理视频中扣取的每一张人脸,避免人脸照片积压,保证报警的及时性。

【适应低质量人脸图片】

针对性优化的算法对角度、光照、表情、模糊等影响人脸识别性能的因素具有极强的容忍性,能够解实战过程中照片质量低下的问题,突破了其他类似系统对输入图片严格要求的局限性。

【软硬件一体化】

一台动态人脸布控节点服务器集成了视频解析、人脸扣取、实时布控、人像库、特征库等功能,降低了部署复杂度,有利于基于硬件优化算法,提高了系统稳定性。

【快速对接第三方平台】

系统对外提供webapi接口,支持二次开发,可集成到第三方平台。

【堆叠式扩展运算量】

配合云从动态人脸业务应用平台服务器,系统支持多台设备堆叠,最大支持超过上百路视频接入能力,满足不同规模的动态人像布控需求,方便后期扩容。

云从立式人证合一终端

【业界领先水平】

人脸抓拍与验证速度快,准确率高,对人脸变化、光线、表情有较好的适应性。

【功能完善】

提供人脸验证功能和系统管理等功能。

【易操作】

与传统的自助设备操作类似,极易上手,操作简单。

【易集成】

提供跨平台的接口、集成难度低、集成速度快。

【一体化】

一体化的设计,部署及其方便。

刷脸自助售卖机

刷脸自助售卖机是基于人脸支付功能,用户无需带银行卡、现金,仅凭刷自己的人脸(或加上支付密码)即可轻松完成支付。

4.4.1.2    快速部署平台

适合各行业的专门定制和快速部署的产品服务平台高效易用的调用API、清晰易懂的样例代码、全程支持的专业咨询团队,助力用户在自己的应用中快速嵌入人脸识别能力。

4.4.1.3    智能系统

火眼大数据平台(人证票)

火眼大数据平台系统是为满足公安实战而研发的一套功能强大的人像采集,检测,识别,分析,应用系统。可部署到公安网和视频专网等性质的多种网络环境。基于“深度学习”和“计算机视觉”等IT技术的人脸识别,有着很好的人脸动态捕捉和匹配识别能力,准确度也越来越高,目前已经在金融支付、考勤管理、安全认证、治安管理、刑侦办案等行业中的到了应用。

生物识别引擎

1、产品介绍

该产品可提供多种生物识别引擎,满足不同场景安全性和适用性的需求,可无缝对接到集成生物识别平台,提供生物识别服务。包括:人脸识别引擎,声纹识别引擎,指静脉识别引擎,虹膜识别引擎,指纹识别引擎。

身份证/银行卡OCR

1、产品介绍

本产品采用手机、平板电脑、金融自助机具摄像头拍摄证件图像,或者传入本地存储的证件信息文件,对证件信息(图片和文字)进行识别提取。本产品可配合集成生物识别平台,提供平台的前端图片和信息采集,以及信息自动录入。支持身份证和银行卡等证件卡片信息的识别。

人脸识别加速服务

1、产品介绍

目前,业内人脸识别单台服务器的并发能力保持在20-40笔/秒,通过集群的部署方式能对中小企事业能达到较好的支持。但是如金融体系等,生物识别系统采用集中式部署的方式,对系统的吞吐量,并发量要求特别高(达到1000-1万笔/秒),单纯通过集群方式提高并发量的模式已经无法满足高并发行业的需求。

云从科技推出人脸识别加速服务,运用CPU+GPU的服务器计算架构,让人脸识别等核心计算在GPU并行处理,提高系统并发计算能力,单台服务器并发数达到400笔/秒以上,并配合集群的运用,为高并发的行业需求提供良好的解决方案。

联网鉴身

1、产品介绍

云从联网鉴身平台包含公有云平台和客户端SDK,是基于云从科技人脸识别核心技术,通过在客户端输入用户姓名、身份证号码调用公安人像数据,进行现场照片、身份证照片、公安部预留人像照三方比对,达到互联网鉴定用户身份的目的。

客户端支持android、iOS、OCX方式的SDK,为客户提供基础示例代码,供客户调用对应的接口。

IBIS集成生物识别系统

1、产品介绍

集成生物识别系统IBIS采用人工智能技术,以人脸、指纹、声纹、虹膜、指静脉等多种生物识别技术为核心,建立跨平台的、开放的、可扩展的统一身份认证平台,为用户提供集中、统一的生物特征身份认证和访问控制服务,并可无缝的融入已有的信息安全系统。

IBIS是连接核心银行系统、大前置、CRM、卡中心系统等各类交易系统的平台;是银行内部基于用户、员工生物特征鉴别的重要系统。为银行的交易系统,内控,安保,精准营销等极大地提高了安全性和效率。

IBIS系统包括:客户端SDK,生物识别平台,生物识别引擎。

金融创新产品

系统简介

云从科技金融创新产品簇将先进的人脸识别技术运用于银行自助机具、营销广告机等硬件设备,提升银行网点科技感,增加自助设备交互能力,从而达到吸引用户、活客的目的。

金融创新产品簇包含软件部分和硬件部分:

软件部分:人脸识别引擎、VIP系统。

硬件部分:ATM/VTM/CRS机具,广告机(触摸屏),电脑(i7处理器、8g内存)。

全链实时信息流

云从科技全链实时信息流,采用大数据分析、人脸识别、智能机器人等新兴技术运用于银行各类型营业网点,通过优化银行网点管理流程(包括客户预约、迎宾、营销、自助业务处理等方面)提升客户体验及业务办理效率。

全链实时信息流包含软件部分和硬件部分:

软件部分:VIP系统、人脸识别引擎等。

硬件部分:网络摄像机、平板电脑、门禁、广告机等。

智慧鉴身产品簇

云从科技智慧鉴身产品簇,通过集成人脸识别、指纹识别、虹膜识别等多种生物特征识别方案,广泛运用于金融行业业务办理时身份验证并进行统一记录与管理,对用户进行交叉实名认证,加强了金融机构信息管理、风险管理、审计“三道防线”建设。

系统简介

智慧鉴身产品簇包含软件部分和硬件部分:

软件部分:集成生物识别系统(IBIS)、人证合一软件、VIP系统、云之眼人脸识别引擎、人脸识别客户端SDK、OCR识别控件等。

硬件部分:人证合一高拍仪、身份证读卡器、虹膜识别仪、指纹识别仪、指静脉识别仪、智能门禁、智能金锁等。

小云智能迎宾机

小云智能迎宾通过云从人脸识别技术来帮助金融机构各网点区域性的门禁/闸机人员识别,增加安全防护、VIP迎宾,增加VIP感受度、员工考勤管理、企业CRM系统集成等方面的智能化管理、生日提醒,增加对用户关怀,从而提升企业效能、形象、价值。

4.4.2 融资情况

4.4.3 市场估值

200亿元人民币左右,公开资料显示在30亿美元左右。

4.5  旷视科技

2013 年新广告法还没实行,旷视科技为 Face++ 写下文案:“最好的人脸识别云计算平台”。

旷视科技作为中国人工智能独角兽企业,在深耕技术的同时,逐步探索商业路径,从 2C 向 2B 及2B2C 转移,通过为其他厂商提供技术及行业解决方案,推动技术的落地。计算机视觉几大重点应用领域已经催生了多家独角兽公司,与此同时,包括海康威视等行业技术公司以及 BAT 等互联网公司也在视觉领域加快布局,市场竞争愈加激烈,平台技术公司只有深扎行业才能形成壁垒。在技术、硬件、平台方面均有布局的旷视,有望在未来继续领跑金融安全、城市安防等赛道。

4.5.1 产品介绍

旷视科技目前经营 Face ID、 Face++、智能安防和智能地产四项业务,以动态人脸识别、在线/离线活体检测、超大人像库实时检索、证件识别、实时监测与轨迹分析等五大技术为核心,发展人工智能云平台和物联网平台,覆盖互联网金融、城市安防、机器人等多个领域,为企业级用户提供人工智能产品和行业解决方案,并逐步向智能手机、机器人等消费级市场拓展。通过在垂直领域提供从传感器硬件,到云基础服务,再到上层应用的一整套解决方案,旷视科技形成链式闭环。

旷视科技的人工智能云平台(Face++人工智能开放平台)与智能物联平台(Megvii Sensor Network)两大核心产品,应用到金融、安防、地产等企业级市场,覆盖重点场所管控、 营区周边安全、商超、会议等使用场景,提供行业智能解决方案和智能数据服。其中, Face++云平台日均调用量接近 2000 万次,并通过数据、技术、产品、用户使用这个循环来不断增强人工智能平台的数据标识与分辨能力。

4.5.2 融资情况

4.5.3 市场估值

根据科技部公布中国独角兽榜单,市场估值25亿美元。

4.6  商汤

4.6.1 产品介绍

智能视频

身份验证

移动互联网

其他

4.6.2 融资情况

4.6.3 市场估值

5月31日,商汤科技正式对外宣布获得6.2亿美金C+轮融资,截至目前总融资额超过16亿美金,刷新全球人工智能领域融资记录,估值超过45亿美金。

4.7  依图

依图科技于 2012 年成立,业务涵盖计算机视觉、自然语言理解、语音识别和人工智能芯片,是当下技术布局最全面的人工智能公司之一,与 face++、云从、商汤并称为中国四大 AI 独角兽企业。在安防领域,公司研发的“蜻蜓眼”人像大平台已服务全国上百个地市公安系统,是全国唯一拥有十亿级人像库比对能力的公司;在金融领域,招商银行 1500 多个网点接入了依图系统。依图科技以To B业务起家,是“AI独角兽”中最早将人工智能应用于安防领域的公司,官方信息显示,目前其安防产品已应用于中国近30省。

而在医疗领域,依图医疗凭借在深度学习、计算机视觉、自然语言处理等领域的先进技术,面向放射科、超声科、儿科等多个科室提供临床诊疗辅助诊断和智能管理,目前已推出 care.ai 系列产品,包括:care.ai 胸部 CT 智能辅助诊断、care.ai 儿童骨龄智能辅助诊断、care.ai 儿科门诊智能辅助诊断、 care.ai 病历智能搜索引擎、 care.ai临床智能科研平台等。

4.7.1 产品介绍

4.7.1.1    智能安防

依图科技“蜻蜓眼™”智能安防产品

依图蜻蜓眼智能安防平台,以计算机视觉为核心,通过平安城市、智能交通和智慧金融等视频监控设备为“眼目”,构建城市和行业专属的智能安防体系。 数以万计的“小眼”让蜻蜓复眼具备自然界中最精准的视觉感知能力,基于世界领先的机器视觉算法及平台解决方案的依图人像大平台和车辆大平台,通过城市之眼构建了与蜻蜓眼一样的精准识别能力,为平安城市、智能交通和智慧金融等行业提供了安全应用的可靠平台。

4.7.1.2    依图医疗

依图医疗凭借在深度学习、计算机视觉、自然语言处理等领域的先进技术以及在医疗行业的深厚积累,面向放射科、超声科、儿科等多个科室提供临床诊疗辅助诊断和智能管理,并结合前沿医学热点,提供专业的科研大数据分析和前沿的跨学科科研及转化应用。

目前已推出care.ai ™ 系列产品,包括:care.ai ™胸部CT智能辅助诊断、care.ai ™ 儿童骨龄智能辅助诊断、care.ai ™ 儿科门诊智能辅助诊断、 care.ai ™ 病历智能搜索引擎、  care.ai™临床智能科研平台等。

4.7.1.3    智慧金融

作为金融领域最大的AI服务商,依图擅长将实际的业务场景需求与公司已有的成熟产品进行深度融合,并可根据金融行业客户的需求完成定制化开发,解决行业痛点,让技术服务业务创新,用业务反哺技术进步。

依图自主研发的金融行业解决方案已覆盖金融各个领域,包括银行、互联网金融、证券、基金、保险、汽车金融等。依图针对各个细分领域、结合用户场景,提供完整的智慧金融解决方案。

依图在金融领域做出了颠覆式的创新,在招商银行、农业银行等多家银行实现“刷脸取款”研发落地,并广泛推广到实际应用。依图将一流的人脸识别技术与各类金融领域业务场景相结合,提供创新性解决方案,解决了金融行业对于服务和安全等业务层的迫切需求。

刷脸取款解决方案

依图自主研发的双目活体检测人脸认证系统现已应用于招商银行、农业银行等多家银行atm机具,为无卡取款业务的用户提供身份核验功能,帮助用户在自助设备无人监控情况下,安全实现刷脸取款的功能。

智能网点解决方案

智能网点系统能够基于前端抓拍摄像机和后台公有云,实现线下网点场景下的视频监控和客流数据智能分析。

远程核身解决方案

依图手机端人脸验证SDK提供活体检测、人脸1v1比对、身份证OCR三种功能的验证。

4.7.1.4    智慧城市

路网状态建模是解决交通问题的基础,车辆行为建模是掌握整体交通状态的关键,通过视频高保真地还原解析微观交通数据,从而获得宏观交通模型。

高效准确的路况仿真预测算法是破解交通难题的钥匙,有了快速预测算法能在实时交通发生变化时,快速推演各自应对措施并评估应对措施的效果,从而优选出最佳方案推荐实践。

利用快速预测算法,对目标区域的交通管理策略进行高效迭代,根据特定目标特定问题的评价指标体系,推演获取最优策略。并对下发策略进行一致性评估,效果评估,持续迭代,优化调整。

4.7.1.5    智能硬件

打造更加友好的人机交互方式,共造智能新时代

智能时代的硬件产品必备感知、互联和智能三大要素,即能感知人和世界的变化,也表达机器的观察和思考。

依图利用领先的人工智能技术,赋予智能硬件真正的感知世界能力,智造真正的智能硬件产品。

利用机器语音、机器视觉等更加友好的人机交互方式,智能硬件涉足到行业应用中,更能听懂、看懂和理解更专业的内容,给安防、金融、民生等领域更丰富的智慧体验。

4.7.2 融资情况

4.7.3 市场估值

据媒体报道,C轮融资后,依图科技估值达150亿元。

4.8  格灵深瞳

2014 年是“格灵深瞳”的天下,纸媒、门户、科技媒体争相邀其登上头版。据说徐小平、冯波和沈南鹏曾就其市值激烈争论,“最后妥协在了 3000 亿美元这个『中间数』上”。

4.8.1 产品介绍

深瞳人眼摄像机

世界上首款基于人眼工作原理的摄像机

威目车辆大数据系统

基于深度学习的新一代车辆识别引擎,以在线云服务、离线SDK、软硬一体的产品形式让企业级用户和直接业务部门可以快速应用最好的车辆识别技术

威目视图大数据分析平台

基于视图结构化提取的车型、车系、年款等关键信息,对套牌车、假牌车的分析进行有力比对;利用人体/人脸结构化识别的信息,对目标嫌疑人员进行快速定位;配合结构化特征信息,对嫌疑车辆/人员实行快速的以图搜图应用,大幅提高利用效率

威目人脸识别系统

应用自主研发的核心算法,拥有超高准确率的人脸识别系统

皓目行为分析仪

划时代意义的安防产品,真正意义上的人工智能

4.8.2 融资情况

成立于2013年3月,目前B轮,7位投资人,总融资额约1.98亿人民币

4.8.3 市场估值

未知

4.9  乂学教育

国外已经有两家不错的公司,分别是Knewton和RealizeIT,前者估值有10亿美元,后者5到7亿美元,都有将近10年的技术经验积累。  

人工智能自适应学习,是一种教育科技手段,它根据每个学习者的水平,推送不同的学习内容和题目,根据学习者的状态实时调整算法,打造个人学习路径,实现个性化教学。 

4.9.1 产品介绍

小学到初中课程教育

一是通过线下学校收学费,去年乂学教育在全国开设了 100 家学校,今年的目标则是 400 家。不同于传统线下学校,其授课模式则是“自适应系统+人工”相结合。据栗浩洋介绍,“目前的组合是百分之三、四十由老师授课,百分之六、七十则由系统授课,上课效率大大提升,而成本会不断降低。”

二是纯线上学习,通过“自适应学习系统+直播课”的方式来完成 ,直接面向市场招生,通过线上手段覆盖到更大规模的用户。

4.9.2 融资情况

3000 万人民币的种子轮投资,由青松基金领投、正和磁系资本和俞敏洪个人共同完成,天使轮 2.7 亿元的乂学。

4.10   碳云智能

成立于2015年10月27日,是王俊离职华大基因后的在深圳成立的创业公司,公司名碳代表生命,还有互联网和人工智能概念。打造人的生命数字地图,依靠它来指引我们此刻的健康状态,预测我们未来的健康风险。它以前人的“行路经验”为基础,帮助我们规划通往健康的完美路径。

4.10.1    产品介绍

觅我作为碳云智能打造的首个数字生命管理平台,帮助用户构建数字生命管理系统,用户能够持续监测自己的健康状态,预测疾病的发生,从而改善自己的健康。

为此,觅我打造了一系列的健康管理应用,应用主题涵盖营养、运动、美容三大板块:

精准运动,运动爱好者可以通过应用体验包括:基因检测,运动数据追踪预测、定制化运动方案等多种服务。

精准美容,为想要改善肌肤的用户提供皮肤检测,帮助用户分析皮肤成份,并基于检测结果为用户推荐个性化美容产品。

精准营养,个性化的饮食指导,提供饮食评估、饮食记录以及个性化营养套餐等指导服务。

持续的健康追踪 & 健康管理

觅我内置智能健康管家,全方位监测、记录和管理你的健康数据。日常生活中,只需通过语音或照片记录饮食生活习惯,觅我就能够自动分析记录各项营养素摄入,衡量是否达标、超标,并在身体数据异常时进行相关提醒及改善建议,全方位管理你的健康。

4.10.2    融资情况

2016年4月融资近10亿人民币

4.10.3    市场估值

2016年市场估值10亿美元,《2017年中国独角兽企业发展报告》中碳云智能估值

4.11   科大讯飞

科大讯飞股份有限公司成立于 1999 年,是一家专业从事智能语音及语言技术研究、软件及芯片产品开发、语音信息服务及电子政务系统集成的国家级软件企业,在语音合成、语音识别、口语评测、自然语言处理等多项技术上取得了一定成就, 2008 年,科大讯飞在深圳证券交易所挂牌上市。

4.11.1    产品介绍

随着移动互联网时代的到来,科大讯飞率先发布了提供移动互联网智能语音交互能力的讯飞开放平台,并持续升级优化。基于该平台,科大讯飞相继推出了讯飞输入法、灵犀语音助手等应用,通过与行业企业合作的形式推动语音应用深入到手机、汽车、家电、玩具等各个领域,持续引领和推动输及交互模式的变革。2010 年, 科大讯飞发布开放智能交互技术服务平台——讯飞开放平台; 2014 年, 科大讯飞推出了“讯飞超脑计划”,搭建中文的认知智能计算引擎; 2015 年,科大讯飞发布人机交互界面——AIUI,提出人机交互标准。为 B 端用户提供语音交互技术服务的同时,科大讯飞通过讯飞输入法、讯飞语记等触达 C 端用户,并布局家居、教育、客服、医疗等多个场景,以科大讯飞为中心的人工智能产业生态持续构建。

讯飞开放平台是科大讯飞生态布局中的重要一环,为开发者免费提供语音识别、语音合成等语音技术 SDK;人脸识别、声纹识别等统一生物认证系统;智能硬件解决方案及行业解决方案,实现一键接入AI 技术。科大讯飞计划扶持开放平台上的 46 万开发团队,为创业团队提供技术支持、市场拓展、产业链资源、资本对接等全方位优质服务。在 2017 年科技部召开新一代人工智能发展规划暨重大科技项目启动会,提出依托科大讯飞公司建设智能语音国家新一代人工智能开放创新平台,科大讯飞在平台层次上优势尽显。

叮咚智能音箱是科大讯飞联手、京东推出的首款智能音箱产品,运用了多麦克风 Beam-forming 技术、远场识别技术以及多声道回声消除技术,通过接入科大讯飞语音云平台来进行语音识别和自然语言处理,达到远距离语音交互的能力,对用户的要求做出正确的回应。作为国内市场中面世较早的智能音箱产品,叮咚已迭代多款产品并积累了一定的用户,在 Amazon Echo 和 Google Home 已经扮演好智能家居控制中心的角色之后,智能音箱价值进一步凸显。智能音箱市场正群雄逐鹿,叮咚音箱利用现有的市场积累,加上科大讯飞的语音交互和京东微联的硬件布局,以及其他互联网服务和内容服务的整合,在中国智能音箱市场中占据了先发优势。

灵犀语音助手是科大讯飞和中国移动联合推出的智能语音软件,它运用了语音识别和自然语言处理技术并整合了多样的内容服务,用户可通过语音完成打电话、发短信、设提醒、查地图、找美食等日常操作,成为语音助理市场中较为成熟的语音助手产品。

4.11.2    市场格局

语音识别:科大讯飞、百度、出门问问、智齿客服、思必驰、云知声、助理

来也、京东JIMI智能客服、普强科技、捷通华声、紫冬锐意、纳

象立方等。

语义识别:科大讯飞、百度、腾讯、智臻智能、智齿客服、助理来也、京东

JIMI智能客服等。

国内智能语音市场

市场份额

科大讯飞以占比44.2%,位居榜首;百度排名第二,占比为27.8%;苹果占比6.9%,排在第三位。其他捷通华声、小i机器人等也有较大市场份额。

4.12   百度

百度是较早布局人工智能的企业之一,从 2013 年开始投入研发,挖掘专家,组建研发团队, 基于庞大的基础数据和计算能力, 百度在搜索、人工智能、云计算、大数据等技术领域处于全球领先水平。百度研究院通过招揽技术英才,致力于人工智能等相关前沿技术的研究与探索,着眼于从根本上提升百度的信息服务水平。目前,百度人工智能研究成果已全面应用于百度产品,同时,百度将语音、图像、机器翻译等难度高、投入大的技术向业界开放,以降低大众创业门槛,引领行业快速发展。

2017 年,在中国新一代人工智能发展规划暨重大科技项目启动会中,第一批国家人工智能开放创新平台率先公布,其中将依托百度公司建设自动驾驶国家新一代人工智能开放创新平台。在百度世界大会上,百度 CEO 李彦宏表示公司和金龙汽车合作生产的一款无人驾驶的小巴车, 将在 2018 年 7 月份实现量产。 在无人驾驶愈演愈热的今天,百度 Apollo 平台上升为国家自动驾驶开放创新平台,一方面是对百度现有技术的肯定,另一方面将激励百度与多方合作伙伴一起,推动中国汽车产业在自动驾驶领域、在 AI 产业中的发展。

4.12.1    产品介绍

全线出击,覆盖声图文识别理解领域、自然语言、无人驾驶、深度学习、金融风控、知识图谱、机器人等领域。

产品线从基础技术层,到技术层,再到应用层,基本实现全覆盖。

4.12.2    发展布局

截至2018年1月

时间

事件

战略意义

2013.01

百度深度学习研究院成立

百度AI起步

2013.04

设立硅谷人工智能实验室

聚集人才

2014.09

涉足自动驾驶

AI+自动驾驶

2014.09

发布大数据平台

平台成立

2014.12

深度语音系统Deep Speech发布

精准布局语音识别领域

2015.09

退出机器人助力“度秘

应用到多个领域与百度O2O无缝连接

2015.12

Deep Speech2发布

识别准确率达到世界一流水平

2015.12

自动驾驶汽车事业部成立

自动驾驶测试成功

2016.07

投资金融科技公司Zest Finance

战略合作方式延伸到金融领域

2016.08

投资激光雷达公司Welodyne Li DAR

战略投资方式巩固自动驾驶领域地位

2016.10

百度推出医疗大脑

AI+医疗

2016.11

与中国联通合作

AI落地到多个具体服务

2017.07

发布Apollo和DuerOS两大开放平台

为完整的AI生态提供土壤

2017.07

百度无人车在北京首次行驶

开启中国无人车实际驾驶

4.13   腾讯

BAT中腾讯在人工智能领域的入局相对较晚,AI Lab于2016年才创办,目前有50多名AI科学家(90%为博士),200多名AI应用工程师,专注于人工智能的基础研究及应用探索,为腾讯各产品业务提供AI技术支撑。

除此之外隶属于腾讯社交网络事业群的腾讯优图实验室,则主要专注于在图像处理、模式识别、音频语音分析等领域展开技术研发,在QQ空间、微众银行、广点通、腾讯云等项目中进行业务落地。

则主要专注于在图像处理、模式识别、音频语音分析等领域展开技术研发。比较受关注的医疗领域腾讯的“觅影”平台,用作医学影像识别,AI辅助治疗。

4.13.1    产品介绍

计算机视觉包括声图文识别处理、自然语言处理、机器学习,目前主要应用在自身社交和游戏产品中。

4.13.2    发展布局

其次在基础研究领域,腾讯人工智能研究项目包括WHATLAB(微信-香港科技大学人工智能联合实验室)、优图实验室、微信模式识别中心、智能计算与搜索实验室等多个部门。

截至2018年1月

时间

事件

战略意义

2010.09

成立微信模式识别中心

主要为研发微信,也研究图像识别、语

音领域

2012

成立优图实验室

搭建专业技术团队

2013.09

入股搜狗

战略投资,布局大数据和搜索领域

2014.07

scaled Inference

战略投资,布局云服务

2015.04

数百万美元投资Skymind

战略投资,技术合作

2015.05

投资CloudMedx 630万美元

战略投资,布局AI治疗

2015.06

优图刷新国际LFV记录

人脸识别技术达到世界一流

2016.02

投资人工智能创业公司Diffbot

战略投资,技术合作

2016.04

投资碳云智能

战略投资,布局健康医疗健康领域

2016.09

腾讯AI lab

专注基础研究及应用探索

2017.03

围棋AI产品绝艺在日本夺冠

打响腾讯AI lab影响力

2017.05

推出智能服务系统“云小微”

激活硬件生态

2017.07

投资Oben 500万美元

战略投资,布局云服务

4.14   阿里

阿里巴巴在AI的研究侧重点更偏实用性。阿里人工智能实验室(A.I.Labs)研发出一款类似于亚马逊Echo的智能音箱“天猫精灵”,另一个是阿里巴巴人工智能核心部门iDST,iDST是阿里巴巴内部专门从事基础科学研究的部门,核心成员在美国西雅图的实验室工作,关注语音识别、自然语义分析、计算机视觉、智能决策等。作为一个to B的部门,iDST的研究成果会输出给像A.I.Labs这类面向消费者端的产品去应用,两者可理解为实验室和场景的关系。作为基础研究所,iDST的成果除了为A.I.Labs提供消费级人机交互技术输出外,更多是输出给了阿里云ET,做各垂直领域的企业级与政府公共事务级服务。

ET的背后是阿里云的计算能力,前端已经演化出四个垂直“大脑”,像已经在杭州和苏州落地、通过预测拥堵最多能提升11%车辆通行率的ET城市大脑;已运用在协鑫光伏、中策橡胶等企业提高良品率的ET工业大脑;通过机器学习在医学影像、精准医疗、药效挖掘发挥医生助手作用的ET医疗大脑;以及已在江苏省落地,通过交叉分析气温、风力、气压、湿度、降水等指数来进行环境预警的ET环境大脑。

4.14.1    产品介绍

主要集中在计算机视觉领域,以及机器学习和语音识别等,解决方案覆盖六大行业:

ET城市大脑,ET工业大脑,ET农业大脑,ET环境大脑,ET医疗大脑,ET航空大脑。

4.14.2    发展布局

阿里在人工智能上更多的关注云计算方面,目前阿里的人工智能产品主要应用在两个层面上:第一是在电商业务,第二则是B端。

截至2018年1月

时间

事件

战略意义

2012

AI作为阿里云服务的子项目

阿里ai战略的开端

2015.06

战略投资日本机器人公司SBRH

引入AI底层技术

2015.09

支付宝发布机器人客服

AI应用于支付,提升支付业务的效率

2015.10

DT PAI平台

AI底层平台技术搭建

2015.10

阿里绿网上线

阿里AI辅助电商、支付业务的网络安全

2016.03

人工智能服务产品“阿里小蜜

AI应用到淘宝商城、阿里旅行

2016.03

公开展示实时语音识别技术

阿里语音识别做到非常精准

2016.04

小Ai成功预测《我是歌手》结果

阿里AI的深度学习愈发成熟

2016.06

图中文字识别准确率获世界第一

图文识别已经做到非常精确

2016.08

推出ET机器人

阿里AI延伸到自身之外的业务

2016.10

与政府开展AI合作

稳固地位,协助建立智慧城市

2017.04

联合研发《星际争霸》的人工智能玩家

对AI产业布局进一步延伸

2017

成立AI lab

积极将AI赋能资深产品

5   中国与国外人工智能的对比

根据Statista预计,到2017年,人工智能市场规模预计会增长到约12.5亿美元。到2025年,市场规模将达369亿美元,年均复合增速达50.7%,2017年全球人工智能市场增速将达94%。目前人工智能主要应用在图像识别、物品识别、检测和归类还有自动化的地球物理学特征分析等。人工智能产业最大的一块收入来自企业级的应用市场。

2016-2025年全球人工智能市场规模(亿美元)

到2018年我国人工智能市场规模将超406亿。2016年,智能硬件平台占我国人工智能市场58%的份额。我国AI产品目前以服务机器人、智能工业机器人及机器视觉为主,三者占据整个产品市场超80%的份额。我们认为,未来软件集成平台份额有望进一步提升。

中国人工智能市场规模(单位:亿元)

根据腾讯研究院的报告,美国人工智能企业的发展早于中国 5 年。美国最早从 1991 年萌芽; 1998 进入发展期; 2005 后开始高速成长期; 2013后发展趋稳。中国 AI 企业诞生于 1996 年,2003 年产业进入发展期。在 2015 年达到峰值后进入平稳期。 中国将在人工智能领域继续追赶发达国家。

各国的长处有所不同。美国对这一领域的推动实质上来源于私营部门,但美国国防部和国防部高级研究项目局在其中占据的权重相当大。美国国防部在硅谷设立了一个创新中心,目的是紧跟创新潮流。美国国防部担心民用部门在科技—创新领域的推动作用上领先军事部门。

2000-2016年,美国新增人工智能企业3033家,占全球人工智能总数的37.4%,位列全球第一。但美国每年新增人工智能企业数占当 年全球新增人工智能企业总数的比例一直在下降,2000时这一比例为45%,2016年时下降至26%。 l 美国人工智能企业主要集中于东西海岸。东海岸以纽约地区、波士顿地区为代表,西海岸以旧金山湾区、洛杉矶地区、西雅图等为代表。其中,2000-2016年,旧金山湾区人工智能新增企业数,超过美国人工智能企业总数的三分之一,超过全球除中国外的其它国家。

中国对这一领域的推动力主要来源于国家,但与美国不同的是,中国是增加,而不是削减公共研发的预算。中国的私营部门也对这一领域起到了推动作用,包括一些大型或地方性平台和企业,而且这两者之间还有紧密的合作和细致的规划。

2000-2016年,中国人工智能企业数累积增长1477家。其中,2014-2016年三年是中国人工智能发展最为迅速的时期。在这三年里新增的人工智能企业数量占累积总数的55.38%。 中国每年新增人工智能企业数占全球当年新增企业总数的比例保持上升趋势,2015年达到近17年来的最高值,超过25%。

欧洲的情况介于二者之间。欧洲仍然吸引最优秀的人才,但中国2017年在科学和工程领域培养出160万专业人才,超过其他任何一个国家。中国由于拥有7.3亿国内网民,使其拥有无可比拟的试验场和大数据来源。北京没有隐藏其在各个领域担当领导者的雄心,包括AI(人工智能)技术为中国带来的诸多优势。中国依然践行发展AI技术的国家战略,目的是在2030年创建一个价值高达1500亿美元的产业。英国《金融时报》基于某些咨询公司的数据指出,中国在AI技术领域发表的学术文章的数量2016年首次超过欧盟28个成员国。

事实上,欧洲政治战略中心最近发表的一份报告指出,在很多领域,“欧洲正在走回头路”。这份报告指出,与其他地方不同的是,整个欧洲大陆拥有数量众多的声名显赫的科技中心。因此,欧盟成员国2017年在科技领域的投资增长至112亿欧元;换句话说,与2011年相比,投资增加了5倍。在AI技术领域,欧洲拥有32个研究机构,美国拥有30个研究机构,而中国拥有15个。然而欧洲却缺乏像中美那样的大型平台,欧洲需要向另外一种模式进军。

2000年以来,欧洲每年新增人工智能企业数占全球当年新增人工智能企业总数的比例介于17%-21%之间。欧洲人工智能企业的平均年 龄,明显大于中国,与美国较为接近。2000-2016年,从人工智能企业数量上看,英国在欧洲各国中独占鳌头,其后为德国、法国,三国人工智能企业数分别占欧洲人工智能 总数的27.3%、12.34%和9.6%。法德两国的人工智能企业数增长呈现相近的趋势。英国在三国中一直处于领跑的地位,自2005年开始,英国每年新增人工智能企业数超 越法德两国每年新增人工智能企业数之和。

众所周知,对未来的掌控在这一领域至关重要。在这种情况下,欧洲和美国的保护主义面对中国在向其被认为具有战略性的领域投资时显得愈发高涨。欧洲对此采取的措施是在欧洲范围内设立一个投资保护机构,类似于美国的外国在美投资委员会。在德国、法国和意大利(北欧国家对此表示抗拒,并将这种做法视为具有掩盖性的保护主义)的推动下,欧盟委员会2017年10月向欧洲理事会和欧洲议会提议,对可能威胁到欧盟利益的投资设立投资审查机制。欧盟各成员国本应向欧盟委员会通报其国内的审查制度,但一些成员国并不具备相关体制。换句话说,这种情形正在改变。

2000-2016年,美国人工智能企业占全球人工智能企业总数的37.4%,其中超过1/3的企 业位于旧金山湾区。近年来,旧金山湾区每年新增人工智能企业数占当年美国新增人工智能企业总数的比例在持续上升,2000年这一比例接近30%,2016年则已接近50%。 l2014-2016年三年是中国人工智能发展最为迅速的时期。在这三年里新增的人工智能企业 数量占中国累积总数的55.38%。在欧洲,英国的人工智能企业独占鳌头,其后为德国、法国。但自2005年始,英国每年新 增人工智能企业数就已超越法德两国每年新增人工智能企业数之和。在亚洲,中国的人工智能发展一枝独秀,人工智能企业总数占亚洲总数的68.67%。仅北京与上海的人工智能企业数之和,即与其它亚洲国家的人工智能企业数之和相当。

尽管我国在一些人工智能关键技术尤其是核心算法方面与发达国家水平相当,但我国人工智能整体发展水平与发达国家相比仍有较大差距,比如在高精尖零部件、技术工业、工业设计、大型智能系统、大规模应用系统以及基础平台等方面。专家们还指出,我国人工智能技术发展还面临着体制机制、创新人才、基础设施等方面的挑战。

易建强说:“与人工智能发展成熟且处于前列的美国等相比,虽然中国在人工智能的论文数量方面超过美国,但中国学者的研究影响力尚不及美国或英国同行。”

这背后的一个重要原因就是人才短缺。据统计,美国半数以上的数据科学家拥有10年以上的工作经验,而在中国,超过40%的数据科学家工作经验尚不足5年。还有,在中国只有不到30所大学的研究实验室专注于人工智能,输出人才的数量远远无法满足人工智能企业的用人需求。此外,中国的人工智能科学家大多集中于计算机视觉和语音识别等领域,其他领域的人才相对匮乏。

在产业应用方面,人工智能技术成果虽然已经在我国越来越多的领域应用,但专家表示也还存在一些问题。比如,除少数垂直领域凭借多年大数据积累和业务流程优化经验,催生出营销、风控、智能投顾、安防等人工智能技术可直接落地的应用场景外,大多数传统行业的业务需求与人工智能的前沿科技成果之间尚存在不小差距。面向普通消费者的移动互联网应用与人工智能技术之间的结合尚处在探索阶段。

“在人工智能生态系统方面,美国也更为完善和活跃,创业公司数量远超中国。而且由研究机构、大学及私营企业共同组成的生态系统庞大、创新且多元。”易建强说。

专家建议,应建设开放共享的人工智能创新发展平台,重视和加强人工智能前瞻性基础研究,加大人才培养力度,在深化人工智能技术推广应用、市场准入等方面建立更加宽松的政策环境,不断提升信息化水平来支撑智能化发展,并积极引进培养更多有国际影响力的领军人才。

6   中国未来人工智能发展趋势

人工智能细分领域发展趋势

细分领域

未来十年

数据分析

不同语义层面的跨数据源分析成为可能,用户将能利用更便捷的交互方式。

计算机视觉

高速成像智能设备将成为主流,强大的计算平台和视觉技术,将给社会带来前所未有的环境感受。

语音和自然语言处理

基于国内大数据环境的培养,语言理解模式更成熟智能,将使机器与人更加轻松沟通,初步已具备人类意识。

搜索和信息检索

搜索不再局限与文字,取而代之是语音、图片等,快速检索所需资源,搜索引擎更精准呈现内容。

虚拟现实

虚拟现实系统应用到生活各个地方,娱乐游戏,教育,医疗,金融,会融入人们生活中。

人工智能和机器

更成熟的人机交互技术,家庭服务机器人将会迎来大爆发,工业机器人将普及国内大部分制造业,初步实现“智能制造”。

硬件与设备

基础芯片将迎来大爆发的投入和技术突破,不再受制于国外技术壁垒,各种新技术都将应用于智能设备上。

(一)     平台崛起,技术、硬件、内容多方面资源进一步整合

人工智能覆盖的行业及场景巨大,单一企业无法涉及到人工智能产业的方方面面,厂商基于自身优势切入产业链条,并与其他厂商进行合作,技术、硬件、内容多方面资源进行整合,共同推动人工智能技术落地。在技术、内容及硬件的发展下,平台进一步崛起,生态化布局日益重要。

(二)     人工智能技术继续向垂直行业下沉

通用型人工智能技术已不能满足各行业的需求,不同行业在应用侧重点上有所不同,数据资源也同样不同,需要市场从业者针对行业特点,设计不同的行业解决方案,人工智能技术将继续从场景出发实现技术落地,在垂直行业中,医疗、金融、安防、教育、家居等行业已初具规模,未来发展前景巨大。

(三)     产学研相结合,人才仍是抢夺的重点

AI、物联网成为主流的发展趋势,人才在其中发挥的价值越来越大,而产业发展速度与人才培养速度之间的矛盾在产学研发展路径下将逐渐缩小,专业型人才开始增多,具有核心知识的专家仍然成为厂商抢夺的重点。

在人工智能领域中,国内人才集中在技术层及应用层,基础层人才薄弱,国内高校在人工智能人才培养方面也持续缺失,专业布局较晚,专家有限,导致国内外在教育系统之间的差距较大,这也导致国内在人工智能领域基础层研究的薄弱。在意识到人才方面的缺失之后,国家及企业采取各类措施进行追赶,比如“千人计划”、“新一代人工智能发展规划”等政策吸引优秀专业人才回国,“BAT”企业围绕其核心业务抢夺人工智能人才,百度成为国内人工智能人才的“黄埔军校”。未来需要继续建立核心技术人才培养体系,加强人工智能一级学科建设,实现产学研的有效融合,为人工智能产业持续不断输送优质人才。

(四)     厂商进入卡位战,不断发掘新的商业模式

人工智能将通过 AI+的形式影响各行各业,技术厂商崛起,但应用才是技术落地的关键。技术被集成到各类产品中,技术厂商本身议价能力不强,所获得的利益有限,因此技术厂商积极搭建平台,或发展硬件,布局生态,以集成商的角色获取更多的行业红利。软件以及互联网对传统商业的冲击已是呈颠覆之势,而 AI 所覆盖的领域更为庞大, 冲击也更甚。随着人工智能的发展,由软件和互联网打造的流量价值被打破,数据为王成为新趋势,场景化消费成为用户诉求,云端服务、后端收费等依托智能硬件而发展起来的新兴服务模式逐渐兴起。人工智能产业中的入局者需要在推动技术落地的同时不断发掘新的商业机会。

(五)     中国仍需加大在算力、算法、大数据领域的发展,弥补技术弱势

人工智能底层基础层技术仍旧掌握在欧美国家手中,尤其是芯片、先进半导体等核心零部件,以及算法、开源框架等核心技术,这些技术将直接影响人工智能技术的发展进程。虽然国家通过“中国制造2025”等战略推动先进技术的研发,但是国内研发基础相对薄弱,在基础算法研究领域仍处于劣势。教育不完善、人才短缺、研究领域集中、数据开放不足等问题成为限制中国人工智能发展的重要因素。因此中国仍需加大在算法算力、大数据领域的布局,掌握核心技术能力。

(六)     伦理之争不止, AI 终将取代部分人工

机器学习技术本身非常复杂,深度神经网络中包括着数以亿计的网点,而每个节点对结果的影响无从探究,从而导致算法黑箱的存在,这可能造成很多潜在问题,包括潜在的偏见、对用户的不良引导等等。另一方面由人工智能引发的伦理问题,比如责任的承担方,对少数群体利益的无视等等,都成为AI 伦理探究的问题,并一直无法达成共识。

科大讯飞总裁刘俊峰提到,人工智能三个时间节点,第一个时间节点是这一波人工浪潮,其产业红利在 3-5 年之内会尘埃落地,第二个时间节点是 10 年之内,一半以上的现有工作会被人工智能替代,第三个时间节点是 30 年之内,人工智能将具备自我觉醒的能力。在硅谷备受推崇的观点也是在未来 30年内,90%的工作会因人工智能和机器人技术的进步而被淘汰。伴随着人工智能的兴起,技术威胁论引发的一系列谈论从未停止过,技术裹挟着变革力量推动时代向前发展,这也意味着与时代脱离的观念和行为将会被抛弃:工业革命瓦解小农经济,互联网时代颠覆线下经济实体,人工智能技术将会取代传统耗人时、重复性、机械化运动,机器成为生产主力,同时与之相对应的新兴职业增多,专业技术人才的竞争力加大。

在人工智能取代人类亦或是人工智能增强人类能力的讨论之余,用户所能做的只有强化自身的能力,发挥主体的不可替代性。而在人工智能领域中的基因重组、机器人学等超人类主义项目,仍需要政府加大监管力度。

奇点临近,未来已来。

相关阅读

天猫卖场型旗舰店申请有哪些条件?哪些行业接受卖场型

2017年9月,天猫开放卖场型旗舰店,不过官方对招商行业进行了限制。而天猫此举也是为了更好的提升消费者的购物体验,当然,商家们也多了

现在什么行业最赚钱,如何成为抖音大咖赚取红利

很多网友比较关心现在什么行业最赚钱,要数当下最热门的,是抖音之类的自媒体,一些抖音新手,想利用抖音挣钱,但自己发的抖音视频没什么播

直播行业如此火热,谁最有机会成为最后的赢家?

直播这个行业,最近真是越来越热,不但有小米直播横空出世,连腾讯都连续推出了腾讯直播和企鹅直播两款app,并同时投资了斗鱼直播和龙珠

有哪些不起眼却非常赚钱的行业?

先讲个真实的事。我一个朋友一年多前花了两千多块钱买了一个贴吧,当时就是出于没事玩玩的目的。百度贴吧具体是什么吧,我就不说了。

大数据如何解决行业挑战?大数据在10个垂直行业中的应用

数据已经成为过去几年中大部分行业的游戏规则,行业领袖,学者和其他知名的利益相关者都同意这一点, 随着大数据继续渗透到我们的日常

分享到:

栏目导航

推荐阅读

热门阅读