feed
早期的Feed流主要是把用户关注的内容以Timeline的形式展开。但是随着用户场景的丰富,Feed流也有了更多的变种。本篇文章主要讨论如何设计一个Feed流,以及Feed流背后的设计逻辑。
0.前言
首先,什么是Feed流?
Feed是一个互联网早期的概念,本意是RSS中用来接收信息来源更新的接口。现在的定义比较宽泛,一般而言,持续更新并呈现给用户的内容都叫做Feed流。朋友圈是feed流,微博首页是feed流,知乎首页是feed流,各种门户的内容也是feed流。换句话说,我们大量的在线时间和视线,实际上都被Feed流掌控。
早期的Feed流主要是把用户关注的内容以Timeline的形式展开。但是随着用户场景的丰富,Feed流也有了更多的变种。本篇文章主要讨论如何设计一个Feed流,以及Feed流背后的设计逻辑。
1. Feed流设计的要核心问题
之前提到,对于搜索而言,基本上是召回用户感兴趣的内容,然后进行筛选排序。其实Feed的设计也是如此。一个Feed流永远是在解决两个核心问题:
应该展示给用户什么内容
这些内容该怎么排序
不同的Feed流其实是在给出这两个问题不同的答案。不同的答案也没有绝对的对与错,更多的是场景是否合适。
2. 永恒的经典——Timeline
Timeline,一般而言,不对用户主动要求获取的内容进行筛选,同时所有的内容按照时间排序。最经典的案例就是朋友圈。关于Feed流设计的两个核心问题,微信朋友圈的回答是这样的:
应该展示给用户什么内容:用户好友发的内容
这些内容该怎么排序:按照时间先后顺序
Timeline简单的内容选取和排序非常易于用户理解,充满了极简主义的哲学:随时更新,吸引用户随时打开使用,而每次更新的部分都有限也保证了大部分用户不会错过任何消息。微信也用这个设计,获取了用户大量的时间。
既然Timeline有这么多优点,那么Feed流为什么还会迭代衍生出来其他的设计?
其实这里也牵扯到一个问题,Timeline有一个致命的缺点——内容呈现效率最为低下。需要内容提供方非常克制,同时也需要用户对这些内容足够关注。
微信朋友圈的内容是用户自己的个人展示,注定不会大量更新;同时选择都是基于熟人关系,能引起用户足够的关注。正是这两个原因,保证了朋友圈内容虽然效率低下,但是还是极具吸引力。如果动辄每天上千条陌生人更新的内容,使用Timeline的形式呈现出来,想见一下,这是一个多么缺乏思考的设计。
2. 重力排序算法——兼顾热度和更新时间
如果每天有更新量很大的Feed流,同时大部分内容没有太大用户价值,这种情况下我们该怎么排序?这个场景其实也很常见,也是一些PM在实际工作中遇到的棘手问题。答案就是重力排序算法。
重力排序算法中,对于一个在Feed流中的内容而言,有两种力量:重力和拉力。重力是持续让内容往下掉的力,这个重力就是时间,因为新的内容会把老的内容刷下去;同时拉力则是让内容排序往前的力,比如知乎的赞,贴吧的回复。
这样的排序算法实现方式有很多,这里可以简单介绍一种,也是来自Reddit的核心排序算法:
其中:H表示能代表内容热度的值:比如说收到的赞,比如说浏览量,也可以是综合类似的指标,加权求和得到的值。
T代表内容发布的时间,代表一个时间的起始值,只要比最早发布的内容早就行了(比如用公司创立时间)。T-T0用来衡量一个内容的新旧程度,单位为秒,T-T0越大,则代表内容越新。
A也是设立的参数,A越大,T-T0的影响力越小,则内容更新的越慢。一般而言初始值可以用36000,10个小时的秒数,后续不断迭代。
关于Feed流设计的两个核心问题,重力排序算法的回答是这样的:
应该展示给用户什么内容:用户表现出喜好的内容都推给用户,虽然用户不一定看得见后面的。
这些内容该怎么排序:按照时间衰减因素和内容受欢迎程度综合排序。
3. 智能排序——双刃剑
facebook使用智能排序之后据称效果拔群,于是我们看到越来越多的社交网络放弃使用Timeline排序,转入智能排序的阵营,国外的Twitter,国内的微博和知乎。
智能排序牵扯到复杂的模型构建和机器学习,这里只阐述下简单的原理。
首先,系统需要知道什么是一个内容被展示的目标值。比如微博,一个内容被展示的目标值是转发,评论,点赞的次数。那么通过大量的样本的机器学习,系统对于什么是好的内容会有一个预测。这个对于一个内容的预测,则是的智能排序的基础。
接下来,系统会屏蔽掉一些违规的内容,比如Facebook处罚标题党,知乎处罚抱团点赞。
其次,为了用户内容的质量,系统会在用户的Feed中增加一些热门的内容。
最后,考虑内容和用户的亲密度、系统认为内容受欢迎的程度、内容时间衰减性等因素后,系统进行综合排序。
听起来智能排序是一个很好的主意。但是,智能排序也是一把双刃剑。
算法质量的高要求,导致一些技术比较差的公司,使用智能排序效果不佳。另一方面,因为智能排序的不透明性和扩展性,过度的商业化更是成为了用户体验的头号凶手。
有的内容因为用户买了粉丝头条而可以排在Feed流前面,有的内容只要有足够的推广费,可以绕过关注关系,呈现在用户面前。智能排序如果被过度商业化,那么Feed流的用户体验也会越来越差。
4. 总结
Feed流的设计原理其实讲起来比较简单,如果需要成型的排序算法,也可以找到很多,但是更重要的是,什么是真正适合的选择。
如果选择Timeline的排序,那么就需要考虑用户关注的内容是否足够有吸引力。
如果选择重力排序算法,那么就需要考虑该如何选择参数保证最后的展示效果。
如果加入不断壮大的智能排序大军,那么就需要考虑是否有足够的技术实力和产品自制力。
重要的是思考清楚两个问题:
应该展示给用户什么内容
这些内容该怎么排序
Don’t waste life in doubts and fears,just make a choice.
相关阅读
准备报名天天特价的卖家朋友在填写资料的时候,需要填写与商品有关的信息。这时候给上活动的商品定什么价位,商品参加活动的数量有多
在人类已跨人21世纪的今天,由于信息科学技术高速发展,消费方式发生巨大的变化,现代市场行情变得更为错综复杂,市场竞争异常激烈。任何
各位小伙伴们好鸭,这是过年之后更新的第一篇文章了。前段时间不少内推了360、腾讯、京东的小伙伴收到了笔试通知,然并卵。数字推理
说到产品游戏化系统的设置,就不得不提到PBL游戏化策略,它作为产品的辅助策略,能够极有效地优化用户体验。在《游戏化实战》《游戏化
在抖音这个亿级日活的大平台上,如何让创作的内容获得抖音平台的流量加持?如何保证自己的内容能吸引并留住更多的用户和粉丝?以下是苏