二分查找
本文首发于我的个人博客:尾尾部落
二分查找法作为一种常见的查找方法,将原本是线性时间提升到了对数时间范围,大大缩短了搜索时间,但它有一个前提,就是必须在有序数据中进行查找。
二分查找很好写,却很难写对,据统计只有10%的程序员可以写出没有bug的的二分查找代码。出错原因主要集中在判定条件和边界值的选择上,很容易就会导致越界或者死循环的情况。
下面对二分查找及其变形进行总结:
1. 最基本的二分查找
public int binarySearch(int[] A, int target, int n){
int low = 0, high = n, mid;
while(low <= high){
mid = low + (high - low) / 2;
if(A[mid] == target){
return mid;
}else if(A[mid] > target){
high = mid - 1;
}else{
low = mid + 1;
}
}
return -1;
}
其中,有几个要注意的点:
1. 循环的判定条件是:low <= high
2. 为了防止数值溢出,mid = low + (high - low)/2
3. 当 A[mid]
不等于target
时,high = mid - 1
或low = mid + 1
leetcode参考:Search Insert Position
2. 查找目标值区域的左边界/查找与目标值相等的第一个位置/查找第一个不小于目标值数的位置
A = [1,3,3,5, 7 ,7,7,7,8,14,14]
target = 7
return 4
public int binarySearchLowerBound(int[] A, int target, int n){
int low = 0, high = n, mid;
while(low <= high){
mid = low + (high - low) / 2;
if(target <= A[mid]){
high = mid - 1;
}else{
low = mid + 1;
}
}
if(low < A.length && A[low] == target)
return low;
else
return -1;
}
3. 查找目标值区域的右边界/查找与目标值相等的最后一个位置/查找最后一个不大于目标值数的位置
A = [1,3,3,5,7,7,7, 7 ,8,14,14]
target = 7
return 7
public int binarySearchUpperBound(int[] A, int target, int n){
int low = 0, high = n, mid;
while(low <= high){
mid = low + (high - low) / 2;
if(target >= A[mid]){
low = mid + 1;
}else{
high = mid - 1;
}
}
if(high >= 0 && A[high] == target)
return high;
else
return -1;
}
此题以可变形为查找第一个大于目标值的数/查找比目标值大但是最接近目标值的数
,我们已经找到了最后一个不大于目标值的数,那么再往后进一位,返回high + 1
,就是第一个大于目标值的数。
剑指offer:数字在排序数组中出现的次数
4. 查找最后一个小于目标值的数/查找比目标值小但是最接近目标值的数
此题以可由第 2 题变形而来,我们已经找到了目标值区域的下(左)边界,那么再往左退一位,即low - 1
,就是最后一个小于目标值的数。其实low - 1
也是退出循环后high
的值,因为此时 high
刚好等于low - 1
,它小于low
,所以 while 循环结束。我们只要判断high
是否超出边界即可。
A = [1,3,3, 5 ,7,7,7,7,8,14,14]
target = 7
return 3
int low = 0, high = n, mid;
while(low <= high){
mid = low + (high - low) / 2;
if(target <= A[mid]){
high = mid - 1;
}else{
low = mid + 1;
}
}
return high < 0 ? -1 : high;
5. 查找第一个大于目标值的数/查找比目标值大但是最接近目标值的数
此题以可由第 3 题变形而来,我们已经找到了目标值区域的上(右)边界,那么再往右进一位,即high + 1
,就是第一个大于目标值的数。其实high + 1
也是退出循环后low
的值,因为此时 low
刚好等于high + 1
,它大于high
,所以 while 循环结束。我们只要判断low
是否超出边界即可。
A = [1,3,3,5,7,7,7,7, 8 ,14,14]
target = 7
return 8
int low = 0, high = n, mid;
while(low <= high){
mid = low + (high - low) / 2;
if(target >= A[mid]){
low = mid + 1;
}else{
high = mid - 1;
}
}
return low > n ? -1 : low;
6. 旋转数组返回最小元素
6.1 查找旋转数组的最小元素(假设不存在重复数字)
LeetCode: Find Minimum in Rotated Sorted Array
Input: [3,4,5,1,2]
Output: 1
public int findMin(int[] nums) {
int len = nums.length;
if(len == 0)
return -1;
int left = 0, right = len - 1, mid;
while(left < right){
mid = left + (right - left) / 2;
if(nums[mid] > nums[right])
left = mid + 1;
else{
right = mid;
}
}
return nums[left];
}
注意这里和之前的二分查找的几点区别:
1. 循环判定条件为left < right
,没有等于号
2. 循环中,通过比较nums[left]与num[mid]的值来判断mid所在的位置:
- 如果
nums[mid] > nums[right]
,说明前半部分是有序的,最小值在后半部分,令left = mid + 1
; - 如果
nums[mid] <= num[right]
,说明最小值在前半部分,令right = mid
。
最后,left会指向最小值元素所在的位置。
6.2 查找旋转数组的最小元素(存在重复项)
LeetCode: Find Minimum in Rotated Sorted Array II
剑指offer:旋转数组的最小数字
Input: [2,2,2,0,1]
Output: 0
public int findMin(int[] nums) {
int len = nums.length;
if(len == 0)
return -1;
int left = 0, right = len - 1, mid;
while(left < right){
mid = left + (right - left) / 2;
if(nums[mid] > nums[right])
left = mid + 1;
else if(nums[mid] < nums[right])
right = mid;
else
right--;
}
return nums[left];
}
和之前不存在重复项的差别是:当nums[mid] == nums[right]
时,我们不能确定最小值在 mid
的左边还是右边,所以我们就让右边界减一。
7. 在旋转排序数组中搜索
7.1 不考虑重复项
LeetCode: Search in Rotated Sorted Array
法一:
- 先利用方法 6.1 查找数组中的最小元素,即确定分界点的位置
- 把旋转的数组当成偏移,用
(offset + mid) % len
来求真实的 mid 的位置。 - 然后用二分查找来定位目标值
public int search(int[] nums, int target) {
int len = nums.length;
if(len == 0)
return -1;
int left = 0, right = len - 1, mid;
while(left < right){
mid = left + (right - left) / 2;
if(nums[mid] > nums[right])
left = mid + 1;
else
right = mid;
}
int offset = left;
left = 0;
right = len - 1;
while(left <= right){
mid = left + (right - left) / 2;
int realmid = (mid + offset) % len;
if(nums[realmid] == target)
return realmid;
else if(nums[realmid] < target)
left = mid + 1;
else
right = mid - 1;
}
return -1;
}
法二:其实没有必要找到旋转数组的分界点,对于搜索左侧还是右侧我们是可以根据mid跟high的元素大小来判定出来的,直接根据target的值做二分搜索就可以了。
public int search(int[] nums, int target) {
int len = nums.length;
if(len == 0)
return -1;
int left = 0, right = len - 1, mid;
while(left <= right){
mid = left + (right - left) / 2;
if(nums[mid] == target)
return mid;
else if(nums[left] <= nums[mid]){
if(target < nums[mid] && target >= nums[left])
right = mid - 1;
else
left = mid + 1;
}else if(nums[mid] <= nums[right]){
if(target > nums[mid] && target <= nums[right])
left = mid + 1;
else
right = mid - 1;
}
}
return -1;
}
7.2 存在重复项
LeetCode: Search in Rotated Sorted Array II
public boolean search(int[] nums, int target) {
int len = nums.length;
if(len == 0)
return false;
int left = 0, right = len - 1, mid;
while(left <= right){
mid = left + (right - left) / 2;
if(nums[mid] == target)
return true;
else if(nums[mid] > nums[right]){
if(target < nums[mid] && target >= nums[left])
right = mid;
else
left = mid + 1;
}else if(nums[mid] < nums[right]){
if(target > nums[mid] && target <= nums[right])
left = mid + 1;
else
right = mid;
}else{
right --;
}
}
return false;
}
8. 二维数组中的查找
剑指offer:二维数组中的查找
二维数组是有序的,从右上角来看,向左数字递减,向下数字递增。因此可以利用二分查找的思想,从右上角出发:
- 当要查找数字比右上角数字大时,下移;
- 当要查找数字比右上角数字小时,左移;