必威体育Betway必威体育官网
当前位置:首页 > IT技术

决策树模型

时间:2019-08-17 08:43:12来源:IT技术作者:seo实验室小编阅读:65次「手机版」
 

决策树模型

决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

优点: 计算复杂度不高,输出结果易于理解。对中间值的缺失不敏感,可以处理多种数据类型,决策树可以清晰的显示哪些字段较重要。

缺点: 对连续性的字段比较难预测。 有时间顺序的数据,要很多预处理工作。可能产生过度匹配的问题。

构造决策树的关键步骤是分裂属性。所谓分裂属性就是在某个节点处按照某一特征属性的不同划分构造不同的分支,其目标是让各个分裂子集尽可能地“纯”。尽可能“纯”就是尽量让一个分裂子集中待分类项属于同一类别。分裂属性分为三种不同的情况:

1、属性是离散值且不要求生成二叉决策树。此时用属性的每一个划分作为一个分支。

2、属性是离散值且要求生成二叉决策树。此时使用属性划分的一个子集进行测试,按照“属于此子集”和“不属于此子集”分成两个分支。

3、属性是连续值。此时确定一个值作为分裂点split_point,按照>split_point和<=split_point生成两个分支。

构造决策树的关键性内容是进行属性选择度量,属性选择度量是一种选择分裂准则,是将给定的类标记的训练集合的数据划分D“最好”地分成个体类的启发式方法,它决定了拓扑结构及分裂点split_point的选择。

属性选择度量算法有很多,一般使用自顶向下递归分治法,并采用不回溯的贪心策略。决策树的构建算法主要有ID3、C4.5、CART三种,其中ID3和C4.5是分类树(结果是类别),CART是分类回归树(结果是确定的数值)。其中ID3是决策树最基本的构建算法,而C4.5和CART是在ID3的基础上进行优化的算法。

1、ID3算法

从信息论知识中我们直到,期望信息越小,信息增益越大,从而纯度越高。所以ID3算法的核心思想就是以信息增益度量属性选择,选择分裂后信息增益最大的属性进行分裂。下面先定义几个要用到的概念。

设D为用类别对训练元组进行的划分,则D的熵(entropy)表示为:

 

其中pi表示第i个类别在整个训练元组中出现的概率,可以用属于此类别元素的数量除以训练元组元素总数量作为估计。

熵的实际意义表示是D中元组的类标号所需要的平均信息量。

现在我们假设将训练元组D按属性A进行划分,则A对D划分的期望信息为:

 

而信息增益即为两者的差值:

 

ID3算法就是在每次需要分裂时,计算每个属性的增益率,然后选择增益率最大的属性进行分裂。下面我们继续用SNS社区中不真实账号检测的例子说明如何使用ID3算法构造决策树。为了简单起见,我们假设训练集合包含10个元素:

其中s、m和l分别表示小、中和大。

设L、F、H和R表示日志密度、好友密度、是否使用真实头像和账号是否真实,下面计算各属性的信息增益。

 

 

 

因此日志密度的信息增益是0.276。

用同样方法得到H和F的信息增益分别为0.033和0.553。

因为F具有最大的信息增益,所以第一次分裂选择F为分裂属性,分裂后的结果如下图表示:

在上图的基础上,再递归使用这个方法计算子节点的分裂属性,最终就可以得到整个决策树。

上面为了简便,将特征属性离散化了,其实日志密度和好友密度都是连续的属性。对于特征属性为连续值,可以如此使用ID3算法:

先将D中元素按照特征属性排序,则每两个相邻元素的中间点可以看做潜在分裂点,从第一个潜在分裂点开始,分裂D并计算两个集合的期望信息,具有最小期望信息的点称为这个属性的最佳分裂点,其信息期望作为此属性的信息期望。

2、C4.5算法

ID3算法存在一个问题,就是偏向于多值属性,例如,如果存在唯一标识属性ID,则ID3会选择它作为分裂属性,这样虽然使得划分充分纯净,但这种划分对分类几乎毫无用处。ID3的后继算法C4.5使用增益率(gain ratio)的信息增益扩充,试图克服这个偏倚。

C4.5算法首先定义了“分裂信息”,其定义可以表示成:

 

其中各符号意义与ID3算法相同,然后,增益率被定义为:

 

C4.5选择具有最大增益率的属性作为分裂属性,其具体应用与ID3类似,不再赘述。

关于决策树的几点补充说明

1、停止分裂的条件

决策树不可能不限制地生长,总有停止分裂的时候,最极端的情况是当节点分裂到只剩下一个数据点时自动结束分裂,但这种情况下树过于复杂,而且预测的经度不高。一般情况下为了降低决策树复杂度和提高预测的经度,会适当提前终止节点的分裂。

以下是决策树节点停止分裂的一般性条件:

(1)最小节点数

当节点的数据量小于一个指定的数量时,不继续分裂。两个原因:一是数据量较少时,再做分裂容易强化噪声数据的作用;二是降低树生长的复杂性。提前结束分裂一定程度上有利于降低过拟合的影响。

(2)熵或者基尼值小于阀值。

由上述可知,熵和基尼值的大小表示数据的复杂程度,当熵或者基尼值过小时,表示数据的纯度比较大,如果熵或者基尼值小于一定程度数,节点停止分裂。

(3)决策树的深度达到指定的条件

   节点的深度可以理解为节点与决策树跟节点的距离,如根节点的子节点的深度为1,因为这些节点与跟节点的距离为1,子节点的深度要比父节点的深度大1。决策树的深度是所有叶子节点的最大深度,当深度到达指定的上限大小时,停止分裂。

(4)所有特征已经使用完毕,不能继续进行分裂。

被动式停止分裂的条件,当已经没有可分的属性时,直接将当前节点设置为叶子节点。

2、如果属性用完了怎么办

在决策树构造过程中可能会出现这种情况:所有属性都作为分裂属性用光了,但有的子集还不是纯净集,即集合内的元素不属于同一类别。在这种情况下,由于没有更多信息可以使用了,一般对这些子集进行“多数表决”,即使用此子集中出现次数最多的类别作为此节点类别,然后将此节点作为叶子节点。

3、关于剪枝

在实际构造决策树时,通常要进行剪枝,这时为了处理由于数据中的噪声和离群点导致的过分拟合问题。剪枝有两种:

先剪枝——在构造过程中,当某个节点满足剪枝条件,则直接停止此分支的构造。

后剪枝——先构造完成完整的决策树,再通过某些条件遍历树进行剪枝。

关于剪枝的具体算法这里不再详述,有兴趣的可以参考相关文献。

参考自:

张洋  算法杂货铺  http://www.cnblogs.com/leoo2sk/archive/2010/09/19/decision-tree.html

决策树系列           http://www.cnblogs.com/yonghao/p/5061873.html

相关阅读

机器学习 | 决策树的生成过程是怎样?(一)

一、基本概念决策树的定义:首先,决策树是一种有监督的分类算法——即给定X,Y值,构建X,Y的映射关系。不同于线性回归等是多项式,决策树是

以上瘾模型视角,看腾讯yoo视频“赛道”机制

yoo视频赛道也可以说是一种造星计划,意在为不同兴趣、不同才华、不同行业的普通人提供展示机会及上升渠道。通过上瘾模型的思路来

机器学习模型评估方法

目录 1、基本概念       2、数据集划分方法    2.1、留出法 2.2、交叉验证法 2.3、自助法 2.4、调参 3、性能度量 3.1、 查

常见用户行为分析模型解析(4)——用户行为路径分析模型

用户行为路径分析同样是重要的数据分析模型,它为企业实现理想的数据驱动与布局调整提供科学指导,对精准勾勒用户画像也有重要参考价

数据库的概念模型,联系,E-R模型的设计方法

概念模型的基本概念: 表示概念模型的最常用模型是实体-联系模型(Entity-Relationship Model,简称E-R模型) E-R模型中,数据的结构被表

分享到:

栏目导航

推荐阅读

热门阅读