必威体育Betway必威体育官网
当前位置:首页 > IT技术

NIVIDIA 硬解码学习2

时间:2019-08-16 16:13:15来源:IT技术作者:seo实验室小编阅读:63次「手机版」
 

nividia

NIVIDIA 硬解码学习2

项目学习笔记

引言

  • 在NIVIDIA 硬解码学习1中大概了解了硬解码的几个组成部分。

  • 下载了最新的【Video_Codec_SDK_8.2.16】进行了简答的学习。

  • SDK Samples

    这里写图片描述

最简单的硬解码器实现 APPDec

int main(int argc, char **argv) 
{
    char szInFilePath[256] = "", szOutFilePath[256] = "";
    bool bOutPlanar = false;
    int iGpu = 0;
    Rect cropRect = {};
    Dim resizeDim = {};
    try
    {
        // 按命令行参数读取输入文件等,例如 test.h265
        ParsecommandLine(argc, argv, szInFilePath, szOutFilePath, bOutPlanar, iGpu, cropRect, resizeDim);
        CheckInputFile(szInFilePath); 

        if (!*szOutFilePath) {
            sprintf(szOutFilePath, bOutPlanar ? "out.planar" : "out.native");
        }
        // 初始化cuda环境
        ck(cuInit(0));  
        int nGpu = 0;
        ck(cuDeviceGetCount(&nGpu));
        if (iGpu < 0 || iGpu >= nGpu) {
            std::cout << "GPU ordinal out of range. Should be within [" << 0 << ", " << nGpu - 1 << "]" << std::endl;
            return 1;
        }
        CUdevice cuDevice = 0;
        ck(cuDeviceGet(&cuDevice, iGpu));
        char szDeviceName[80];
        ck(cuDeviceGetName(szDeviceName, sizeof(szDeviceName), cuDevice));
        std::cout << "GPU in use: " << szDeviceName << std::endl;
        CUcontext cuContext = NULL;
        // 设置CUDA上下文!!!
        ck(cuCtxCreate(&cuContext, 0, cuDevice));
        std::cout << "Decode with demuxing." << std::endl;
        /// 进行解码(下面讲解)
        DecodeMediaFile(cuContext, szInFilePath, szOutFilePath, bOutPlanar, cropRect, resizeDim);
    }
    catch (const std::exception& ex)
    {
        std::cout << ex.what();
        exit(1);
    }

    return 0;
}
  • 具体硬解码流程 DecodeMediaFile 函数
void DecodeMediaFile(CUcontext cuContext, const char *szInFilePath, const char *szOutFilePath, bool bOutPlanar,const Rect &cropRect, const Dim &resizeDim)
{
    // 输出
    std::ofstream fpOut(szOutFilePath, std::iOS::out | std::ios::binary);
    if (!fpOut)
    {
        std::ostringstream err;
        err << "Unable to open output file: " << szOutFilePath << std::endl;
        throw std::invalid_argument(err.str());
    }

    // 解析输入的文件,FFmpegDemuxer是对FFmpeg封装的一个解析文件的类
    FFmpegDemuxer demuxer(szInFilePath);
    // 创建硬解码器 设置了三个重要的回调函数
    NvDecoder dec(cuContext/*CUDA上下文*/, demuxer.GetWidth(), demuxer.GetHeight(), false, FFmpeg2NvCodecId(demuxer.GetVideoCodec())/*获得对应解码器名称*/, NULL, false, false, &cropRect, &resizeDim);

    int nVideoBytes = 0, nFrameReturned = 0, nFrame = 0;
    uint8_t *pVideo = NULL, **ppFrame;
    do {
        // Demux 解析,获得每一帧码流的数据存在pVideo中,nVideoBytes为数据的字节数
        demuxer.Demux(&pVideo, &nVideoBytes);
        // 实际解码进入函数
        dec.Decode(pVideo, nVideoBytes, &ppFrame, &nFrameReturned);
        if (!nFrame && nFrameReturned)
            LOG(INFO) << dec.GetVideoInfo();
        // 硬解码是一个异步过程,nFrameReturned表示解码得到了多少帧
        for (int i = 0; i < nFrameReturned; i++) {
            if (bOutPlanar) {
                // 转换格式
                ConvertToPlanar(ppFrame[i], dec.GetWidth(), dec.GetHeight(), dec.GetBitdepth());
            }
            // 写文件
            fpOut.write(reinterpret_cast<char*>(ppFrame[i]), dec.GetFrameSize());
        }
        nFrame += nFrameReturned;
    } while (nVideoBytes);

    std::cout << "Total frame decoded: " << nFrame << std::endl
            << "Saved in file " << szOutFilePath << " in "
            << (dec.GetBitDepth() == 8 ? (bOutPlanar ? "iyuv" : "nv12") : (bOutPlanar ? "yuv420p16" : "p016"))
            << " format" << std::endl;
    fpOut.close();
}
  • 看一下初始化解码器的代码!!!
NvDecoder::NvDecoder(CUcontext cuContext, int nWidth, int nHeight, bool bUseDeviceFrame, cudaVideoCodec eCodec, std::mutex *pMutex,
    bool bLowLatency, bool bDeviceFramePitched, const Rect *pCropRect, const Dim *pResizeDim, int maxWidth, int maxHeight) :
    m_cuContext(cuContext), m_bUseDeviceFrame(bUseDeviceFrame), m_eCodec(eCodec), m_pMutex(pMutex), m_bDeviceFramePitched(bDeviceFramePitched),
    m_nMaxWidth (maxWidth), m_nMaxHeight(maxHeight)
{
    if (pCropRect) m_cropRect = *pCropRect;
    if (pResizeDim) m_resizeDim = *pResizeDim;

    NVDEC_API_CALL(cuvidCtxLockCreate(&m_ctxLock, cuContext));
    // CUVIDparserparams:该接口用来创建VideoParser
    // 主要参数是设置三个回调函数 实现对解析出来的数据的处理
    CUVIDPARSERPARAMS videoParserparameters = {};
    videoParserParameters.CodecType = eCodec;
    videoParserParameters.ulMaxNumDecodeSurfaces = 1;
    videoParserParameters.ulMaxdisplayDelay = bLowLatency ? 0 : 1;
    videoParserParameters.pUserData = this;
    // 三个回调函数
    videoParserParameters.pfnsequenceCallback = handleVideoSequenceProc; // Callback function to be registered for getting a callback when decoding of sequence starts
    videoParserParameters.pfnDecodePicture = HandlePictureDecodeProc; // 准备开始解码的时候调用
    videoParserParameters.pfnDisplayPicture = HandlePictureDisplayProc; // 解码出数据调用

    if (m_pMutex) m_pMutex->lock();
    NVDEC_API_CALL(cuvidCreateVideoParser(&m_hParser, &videoParserParameters));
    if (m_pMutex) m_pMutex->unlock();
}
  • 看一下实际进行解码的函数 Decode
bool NvDecoder::Decode(const uint8_t *pData, int nSize, uint8_t ***pppFrame, int *pnFrameReturned, uint32_t flags, int64_t **ppTimestamp, int64_t timestamp, CUstream stream)
{
    if (!m_hParser)
    {
        NVDEC_THROW_ERROR("Parser not initialized.", CUDA_ERROR_NOT_INITIALIZED);
        return false;
    }

    m_nDecodedFrame = 0;
    // AVPacket转CUVIDSOURCEDATAPACKET,并交给cuvidParseVideoData进行
    CUVIDSOURCEDATAPACKET packet = {0};
    packet.payload = pData;
    packet.payload_size = nSize;
    packet.flags = flags | CUVID_PKT_TIMESTAMP;
    packet.timestamp = timestamp;
    if (!pData || nSize == 0) {
        packet.flags |= CUVID_PKT_ENDOFSTREAM;
    }
    m_cuvidStream = stream;
    if (m_pMutex) m_pMutex->lock(); // 解码要加锁
    printf("------> cuvidParseVideoData\n");
    // cuvidParseVideoData 一直将数据传递给解码
    NVDEC_API_CALL(cuvidParseVideoData(m_hParser, &packet));
    printf("------> cuvidParseVideoData done!\n");
    if (m_pMutex) m_pMutex->unlock(); // 解锁
    m_cuvidStream = 0;

    // 检测是否解码的帧数大于0了。
    if (m_nDecodedFrame > 0)
    {
        printf("m_nDecodedFrame:%d\n", m_nDecodedFrame);
        if (pppFrame) 
        {
            m_vpFrameRet.clear(); // 将返回的队列清空
            std::lock_guard<std::mutex> lock(m_mtxVPFrame);
            // 将m_vpFrame传给m_vpFrameRet;
            m_vpFrameRet.insert(m_vpFrameRet.begin(), m_vpFrame.begin(), m_vpFrame.begin() + m_nDecodedFrame);
            *pppFrame = &m_vpFrameRet[0];// 
        }
        if (ppTimestamp) 
        {
            *ppTimestamp = &m_vTimestamp[0];
        }
    }
    if (pnFrameReturned)
    {
        *pnFrameReturned = m_nDecodedFrame;
    }
    return true;
}
  • 因为我准备是为了获得 解码后的显存数据 所以重点看了 第三个回调函数.HandlePictureDisplay
int NvDecoder::HandlePictureDisplay(CUVIDPARSERDISPINFO *pDispInfo) {
    CUVIDPROCPARAMS videoProcessingParameters = {};
    videoProcessingParameters.progressive_frame = pDispInfo->progressive_frame;
    videoProcessingParameters.second_field = pDispInfo->repeat_first_field + 1;
    videoProcessingParameters.top_field_first = pDispInfo->top_field_first;
    videoProcessingParameters.unpaired_field = pDispInfo->repeat_first_field < 0;
    videoProcessingParameters.output_stream = m_cuvidStream;

    CUdeviceptr dpSrcFrame = 0;
    unsigned int nSrcPitch = 0;
    // MapVideoFrame:拿到解码后数据在显存的指针 --> dpSrcFrame
    NVDEC_API_CALL(cuvidMapVideoFrame(m_hDecoder, pDispInfo->picture_index, &dpSrcFrame,
        &nSrcPitch, &videoProcessingParameters));

    CUVIDGETDECODESTATUS DecodeStatus;
    memset(&DecodeStatus, 0, sizeof(DecodeStatus));
    CUresult result = cuvidGetDecodeStatus(m_hDecoder, pDispInfo->picture_index, &DecodeStatus);
    if (result == CUDA_SUCCESS && (DecodeStatus.decodeStatus == cuvidDecodeStatus_Error || DecodeStatus.decodeStatus == cuvidDecodeStatus_Error_Concealed))
    {
        printf("Decode error occurred for picture %d\n", m_nPicNumInDecodeorder[pDispInfo->picture_index]);
    }

    printf("HandlePictureDisplay::m_nDecodedFrame:%d\n", m_nDecodedFrame);
    uint8_t *pDecodedFrame = nullptr;
    {
        // lock_guard 自动解锁 当控件离开lock_guard创建对象的范围时,lock_guard被破坏并释放互斥体。
        std::lock_guard<std::mutex> lock(m_mtxVPFrame);
        // 解出一帧 m_nDecodedFrame+1,且若不够空间了,则开辟空间
        if ((unsigned)++m_nDecodedFrame > m_vpFrame.size()) 
        {
            printf("HandlePictureDisplay::m_nDecodedFrame:%d\n", m_nDecodedFrame);
            // Not enough frames in stock
            m_nFrameAlloc++;
            uint8_t *pFrame = NULL;
            if (m_bUseDeviceFrame) //m_bUseDeviceFrame 初始化解码器的时候设置的,是否使用显卡内存,是得解码出来的数据不转到cpu内存
            {
                CUDA_DRVAPI_CALL(cuCtxPushCurrent(m_cuContext));
                if (m_bDeviceFramePitched)
                {
                    CUDA_DRVAPI_CALL(cuMemallocPitch((CUdeviceptr *)&pFrame, &m_nDeviceFramePitch, m_nWidth * (m_nBitDepthMinus8 ? 2 : 1), m_nHeight * 3 / 2, 16));
                }
                else 
                {
                    unsigned int FrameSize = GetFrameSize(); // h*w*3/2;
                    int inputWidth = GetWidth();
                    int inputHeight = GetHeight(); 
                    CUDA_DRVAPI_CALL(cuMemAlloc((CUdeviceptr *)&pFrame, GetFrameSize()));
                }
                CUDA_DRVAPI_CALL(cuCtxPopCurrent(NULL));
            }
            else // cpu内存
            {
                pFrame = new uint8_t[GetFrameSize()]; // 开辟空间
            }
            m_vpFrame.push_back(pFrame);
        }
        pDecodedFrame = m_vpFrame[m_nDecodedFrame - 1]; // 取到最后一个
    }

    CUDA_DRVAPI_CALL(cuCtxPushCurrent(m_cuContext)); // 启用context
    printf("cuCtxPushCurrent!\n");
    CUDA_memcpy2D m = { 0 };
    m.srcMemoryType = CU_MEMORYTYPE_DEVICE;
    m.srcDevice = dpSrcFrame;
    m.srcPitch = nSrcPitch;
    m.dstMemoryType = m_bUseDeviceFrame ? CU_MEMORYTYPE_DEVICE : CU_MEMORYTYPE_HOST;
    m.dstDevice = (CUdeviceptr)(m.dstHost = pDecodedFrame);
    m.dstPitch = m_nDeviceFramePitch ? m_nDeviceFramePitch : m_nWidth * (m_nBitDepthMinus8 ? 2 : 1);
    m.WidthInBytes = m_nWidth * (m_nBitDepthMinus8 ? 2 : 1);
    m.Height = m_nHeight;
    CUDA_DRVAPI_CALL(cuMemcpy2DAsync(&m, m_cuvidStream));
    m.srcDevice = (CUdeviceptr)((uint8_t *)dpSrcFrame + m.srcPitch * m_nSurfaceHeight);
    m.dstDevice = (CUdeviceptr)(m.dstHost = pDecodedFrame + m.dstPitch * m_nHeight);
    m.Height = m_nHeight / 2;
    CUDA_DRVAPI_CALL(cuMemcpy2DAsync(&m, m_cuvidStream));
    CUDA_DRVAPI_CALL(cuStreamSynchronize(m_cuvidStream));

    // 解码完成,NV12格式 pDecodedFrame
    // NV12TORGBA
    CUDA_DRVAPI_CALL(cuCtxPopCurrent(NULL)); // 拷贝结束,取消上下文

    if ((int)m_vTimestamp.size() < m_nDecodedFrame) {
        m_vTimestamp.resize(m_vpFrame.size());
    }
    m_vTimestamp[m_nDecodedFrame - 1] = pDispInfo->timestamp;

    NVDEC_API_CALL(cuvidUnmapVideoFrame(m_hDecoder, dpSrcFrame));
    return 1;
}

后记

  • 这个硬解码还是比较简单.主要是封装得比较好了.看起来比较容易.
  • 后续还要再看一下其他几个解码器的使用示例.

相关阅读

C#学习笔记(三)—–C#高级特性:dynamic

C#高级特性:动态绑定 动态绑定 动态绑定将类型绑定(类型解析、成员和操作过程)从编译时推迟到了运行时。在编译时,如果程序员知

搭建minecraft服务器,用于python学习

搭建minecraft服务器,用于python学习 参考链接: https://www.instructables.com/id/Python-coding-for-Minecraft/ https://blog.c

机器学习-学习笔记-梯度下降-SGD/BGD

根据Andrew Ng的Lecture notes, 我重新整理了梯度下降(including LMS/BGDSGD)的相关知识。 首先,引入一个例子, 假设我们现在有一个数

英语学习之常见介词

十七个常见介词 to 到 of 关于 in 在里面 for 为了 on 在上面 with 和 at 在 by 经过 from 从 up 向上的 about 关于 into 进入

机器学习 | 决策树的生成过程是怎样?(一)

一、基本概念决策树的定义:首先,决策树是一种有监督的分类算法——即给定X,Y值,构建X,Y的映射关系。不同于线性回归等是多项式,决策树是

分享到:

栏目导航

推荐阅读

热门阅读