必威体育Betway必威体育官网
当前位置:首页 > IT技术

最短路径Dijkstra算法原理及Matlab实现

时间:2019-07-21 15:11:05来源:IT技术作者:seo实验室小编阅读:78次「手机版」
 

dijkstra算法

图论的基础知识不再阐述。

最短路径算法主要有二

  1. dijkstra算法
  2. Floyd算法

Dijkstra算法研究的是从初始点到其他每一结点的最短路径

而Floyd算法研究的是任意两结点之间的最短路径

以下图为例,首先介绍Dijstra的原理

红字为各结点的编号,蓝字为各结点之间的距离

  1. 首先定义几个变量

    结点个数n;

    二维矩阵M(nxn),距离矩阵,连通的结点间即为距离,不连通的结点间为正无穷,和自己的距离为0;

    一维矩阵pb(1xn),若第i点已找到最短路径,则fp(i)=1,否则等于0,对于初始结点,fp=1;

    距离矩阵d(1xn),若第i点已找到最短路径,则的d(i)=最短距离,否则为0,初始结点d=0;

    上一结点矩阵path(1xn),若第i点找到了最短路径,则path存放这一条最短路径的前一个结点,通过对每一点的回溯,可以找到最短路径。

  2. 根据距离写出以下距离矩阵

    这里写图片描述

  3. 确定初始点为v1,则pb(1)=1;

    在图中,结点上,我们将已找到最短路径的点标为它的最短距离,(可以理解为v1点已找到最短路径,距离为0),未找到的其余点表为正无穷(即表示不连通)。

    这里写图片描述

    在与v1连通的点中,即在矩阵m的第1行,寻找最小值,最小值所在列即确定的最短路径的结点,如同v2最短,pb(2)=1,d(2)=1,对于已找到最短路径的v2上一结点为v1,path(2)=1;

    这里写图片描述

    接着,在

    • 与v1连通的,且未找到最短距离的节点的距离
    • 与v2连通的,且未找到最短距离节点的距离+v2的最短距离

    以上两种中寻找最短距离,最短为v6,pb(6)=1;d(6)=2;path(6)=1;

    这里写图片描述

    重复以上步骤,在

    • 与v1连通的,且未找到最短距离的节点的距离
    • 与v2连通的,且未找到最短距离节点的距离+v2的最短距离
    • 与v6连通的,且未找到最短距离节点的距离+v2的最短距离

      以上三种中寻找最短路径,最短为v3,pb(3)=1;d(3)=3);path(3)=6;

      这里写图片描述

      我们可以发现,所要寻找的最短路径即为

      对于已找到最短路径的点(包括初始结点),在与其连通的,未找到最短路径的结点中,将之间距离与圆圈中的距离(即上一结点已找到的最短路径)相加,求得的最小值。

      如果有多个相同的最短距离,任取其中一个。

      最终最短路径即距离如下图

      这里写图片描述

附上代码

clc;clear;
n=6;   %设置矩阵大小
temp=1;  %设置起始点
m=zeros(6);%定义n阶零矩阵
m(1,2)=1;m(1,6)=2;%设置矩阵中非零非无穷的值
m(2,1)=1;m(2,3)=4;m(2,6)=4;
m(3,2)=4;m(3,4)=2;m(3,6)=1;
m(4,3)=2;m(4,5)=3;m(4,6)=3;
m(5,4)=3,m(5,6)=5;
m(6,1)=2;m(6,2)=4;m(6,3)=1;m(6,4)=3;m(6,5)=5;

for i=1:n
    for j=1:n
       if(m(i,j)==0)
           m(i,j)=inf;
       end
    end
end
for i=1:n
    m(i,i)=0;
end
pb(1:length(m))=0;pb(temp)=1;%求出最短路径的点为1,未求出的为0
d(1:length(m))=0;%存放各点的最短距离
path(1:length(m))=0;%存放各点最短路径的上一点标号
while sum(pb)<n %判断每一点是否都已找到最短路径
 tb=find(pb==0);%找到还未找到最短路径的点
 fb=find(pb);%找出已找到最短路径的点
 min=inf;
 for i=1:length(fb)
     for j=1:length(tb)
         plus=d(fb(i))+m(fb(i),tb(j));  %比较已确定的点与其相邻未确定点的距离
         if((d(fb(i))+m(fb(i),tb(j)))<min)
             min=d(fb(i))+m(fb(i),tb(j));
             lastpoint=fb(i);
             newpoint=tb(j);
         end
     end
 end
 d(newpoint)=min;
 pb(newpoint)=1;
 path(newpoint)=lastpoint; %最小值时的与之连接点
end
d
path

路径只需向上回溯就可得到。

相关阅读

图的四种最短路径算法

本文总结了图的几种最短路径算法的实现:深度或广度优先搜索算法,弗洛伊德算法,迪杰斯特拉算法,Bellman-Ford算法1),深度或广度优先搜索

dijkstra

前言 SPFA" role="presentation">SPFASPFA算法由于它上限 O(NM)=O(VE)" role="presentation">O(NM)=O(VE)O(NM)=O(VE)的时间复

Dijkstra算法

迪杰斯特拉算法可以用来求图的最短路径,本文通过对一个无向图最短路径的求取问题来讲解迪杰斯特拉算法。假如有无向图如下: 首先我

分享到:

栏目导航

推荐阅读

热门阅读