fft
原文
定义:
Matlab帮助文件原文
The 'i' in the 'Nth root of unity' 是虚数单位
调用:
1. Y = fft(y);
2. Y = fft(y,N);
式中,y是序列,Y是序列的快速傅里叶变换。y可以是一向量或矩阵,若y为向量,则Y是y的FFT,并且与y具有相同的长度。若y为一矩阵,则Y是对矩阵的每一列向量进行FFT。
说明:
1. 函数fft返回值的数据结构具有对称性
根据采样定理,fft能分辨的最高频率为采样频率的一半(即Nyquist频率),函数fft返回值是以Nyqusit频率为轴对称的,Y的前一半与后一半是复数共轭关系。
2. 幅值
作FFT分析时,幅值大小与输入点数有关,要得到真实的幅值大小,只要将变换后的结果乘以2除以N即可(但此时零频—直流分量—的幅值为实际值的2倍)。对此的解释是:Y除以N得到双边谱,再乘以2得到单边谱(零频在双边谱中本没有被一分为二,而转化为单边谱过程中所有幅值均乘以2,所以零频被放大了)。
3. 基频
若分析数据时长为T,则分析结果的基频就是f0=1/T,分析结果的频率序列为[0:N-1]*f0
4. 执行N点FFT
在调用格式2中,函数执行N点FFT。若y为向量且长度小于N,则函数将y补零至长度N,若向量y的长度大于N,则函数截断y使之长度为N。
注意:
使用N点FFT时,若N大于向量y的长度,将给频谱分析结果带来变化,应该特别注意。
例子:
将对N点FFT进行举例,说明当N大于向量y的长度时给频谱分析带来的变化。
例图
上图中,左列为信号时域图形,右列为对应信号的频谱图。可以看出当N大于向量y的长度时,由于fft自动将100s后的信号值补零,原信号实际变为左下角的时域图形,所以频率发生了变化(增加多种频率的小振幅振动,主峰幅值被削弱)。
结论:
使用N点FFT时,不应使N大于y向量的长度,否则将导致频谱失真。
例子程序:
clear all %清除内存所有变量
close all %关闭所有打开的图形窗口
%% 执行FFT点数与原信号长度相等(100点)
% 构建原信号
N=100; % 信号长度(变量@@@@@@@)
Fs=1; % 采样频率
dt=1/Fs; % 采样间隔
t=[0:N-1]*dt; % 时间序列
xn=cos(2*pi*0.24*[0:99])+cos(2*pi*0.26*[0:99]);
xn=[xn,zeros(1,N-100)]; % 原始信号的值序列
subplot(3,2,1) % 变量@@@@@@@
plot(t,xn) % 绘出原始信号
xlabel('时间/s'),title('原始信号(向量长度为100)') % 变量@@@@@@@
% FFT分析
NN=N; % 执行100点FFT
XN=fft(xn,NN)/NN; % 共轭复数,具有对称性
f0=1/(dt*NN); % 基频
f=[0:ceil((NN-1)/2)]*f0; % 频率序列
A=abs(XN); % 幅值序列
subplot(3,2,2),stem(f,2*A(1:ceil((NN-1)/2)+1)),xlabel('频率/Hz') % 绘制频谱(变量@@@@@@@)
axis([0 0.5 0 1.2]) % 调整坐标范围
title('执行点数等于信号长度(单边谱100执行点)'); % 变量@@@@@@@
%% 执行FFT点数大于原信号长度
% 构建原信号
N=100; % 信号长度(变量@@@@@@@)
Fs=1; % 采样频率
dt=1/Fs; % 采样间隔
t=[0:N-1]*dt; % 时间序列
xn=cos(2*pi*0.24*[0:99])+cos(2*pi*0.26*[0:99]);
xn=[xn,zeros(1,N-100)]; % 原始信号的值序列
subplot(3,2,3) % 变量@@@@@@@
plot(t,xn) % 绘出原始信号
xlabel('时间/s'),title('原始信号(向量长度为100)') % 变量@@@@@@@
% FFT分析
NN=120; % 执行120点FFT(变量@@@@@@@)
XN=fft(xn,NN)/NN; % 共轭复数,具有对称性
f0=1/(dt*NN); % 基频
f=[0:ceil((NN-1)/2)]*f0; % 频率序列
A=abs(XN); % 幅值序列
subplot(3,2,4),stem(f,2*A(1:ceil((NN-1)/2)+1)),xlabel('频率/Hz') % 绘制频谱(变量@@@@@@@)
axis([0 0.5 0 1.2]) % 调整坐标范围
title('执行点数大于信号长度(单边谱120执行点)'); % 变量@@@@@@@
%% 执行FFT点数与原信号长度相等(120点)
% 构建原信号
N=120; % 信号长度(变量@@@@@@@)
Fs=1; % 采样频率
dt=1/Fs; % 采样间隔
t=[0:N-1]*dt; % 时间序列
xn=cos(2*pi*0.24*[0:99])+cos(2*pi*0.26*[0:99]);
xn=[xn,zeros(1,N-100)]; % 原始信号的值序列
subplot(3,2,5) % 变量@@@@@@@
plot(t,xn) % 绘出原始信号
xlabel('时间/s'),title('原始信号(向量长度为120)') % 变量@@@@@@@
% FFT分析
NN=120; % 执行120点FFT(变量@@@@@@@)
XN=fft(xn,NN)/NN; % 共轭复数,具有对称性
f0=1/(dt*NN); % 基频
f=[0:ceil((NN-1)/2)]*f0; % 频率序列
A=abs(XN); % 幅值序列
subplot(3,2,6),stem(f,2*A(1:ceil((NN-1)/2)+1)),xlabel('频率/Hz') % 绘制频谱(变量@@@@@@@)
axis([0 0.5 0 1.2]) % 调整坐标范围
title('执行点数等于信号长度(单边谱120执行点)'); % 变量@@@@@@@
相关阅读
前言 由于本人学习FFT时第一份代码并不是从普通的FFT学起的,而是直接从一个经过优化的版本开始学。这是一个利用到共轭复数性质的
非周期性连续时间信号x(t)的傅里叶变换可以表示为式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够得到的是连续
傅里叶变换:傅里叶变换是一种线性的积分变换。它的理论依据是:任何连续周期信号都可以由一组适当的正弦曲线组合而成,即使用简单的正
最新更新 2018.6.29 新增了“关于DFT的再次思考” 和 “有关FFT算法实现机理的再讨论”两个小节,希望能对没学明白的同学有所帮助
前言 对于学通信的人来说,在学到数字信号处理时都会学到一个东东,叫做快速傅里叶变换(Fast Fourier Transform,简称FFT)。这东西真