安逸建模
今天我们以好奇心日报为业务原型,探讨下数据模型建设过程(本人非好奇心员工,好奇心老板看见如果觉得对数据化运营有所帮助记得给我加鸡腿)。
数据模型是数据平台的基石,是平台搭建过程中最最基础、也是最最重要的环节,为后续数据清洗(ETL)、开发数据报表等工作保驾护航。数据建模做的好,后面工作也会更容易,模型做的不到位,一些报表做起来耗时耗力又吃资源,甚至无法实现。
数据建模一般要经历主题和主题域分析、概念模型、维度设计、指标整理、逻辑模型、物理模型。
好奇心是内容型产品,有NEWS、LABS两个频道,有不同新闻分类和独立的栏目,商业模式以在线广告为主。
为什么选好奇心日报?一方面它确实是目前鱼龙混杂的内容产业中的一股清流,新媒体的一个标杆,以好奇心驱动坚持做有品质的内容、筛选最有价值信息、全球最新动态; 更主要的是它的产品线全面,有APP、PC网站、移动网站、订阅号、小程序,同时也运营着今日头条、网易、微博等各大媒体公号,且成绩有目共睹。产品线全面、业务规模适中,作为业务原型讨论数据建模最合适不过了。
案例说明
了解数据仓库的,都知道数据仓库是面向主题,也就是其中的数据是按主题进行组织的。
首先从分析主题入手,主题是在较高层次上对业务数据进行梳理、归类,一个主题基本对应一个宏观的分析面。
主题域是确定主题中包括的数据分析范围及边界,确定了主题及主题域,数据平台对外输出能力也基本确定了。
好奇心业务来说可以分为内容生产运营、营销、用户、广告收入四个方面;再对主题进一步细化出子主题,例如广告主题可以拆除订单分析、营收分析、广告位分析、品牌主分析、业绩分析,子主题也就是主题的边界。
下面我们分别展开说说四个主题的内容:
用户分析
分基本信息、行为分析、商业兴趣三个子主题。
基本信息就是常见的人口属性,包括性别、年龄、地域、职业、职务、月收入等;
行为分析包括用户触点(用户访问好奇心的入口,是App,还是订阅号,还是同时使用多个)、习惯时段、访问轨迹、评论、参与投票等互动行为;
商业兴趣是指用户对那些新闻分类、栏目、或者内容主题的喜好程度,可以用于指导内容生产和个性化推荐。
流量分析就是常规的网站、App的各频道、栏目的PV、UV、日活数等等指标,同时还要按媒介来源细化到Organic、Syndication、Socail等不同维度和维层;
内容分析可以从单篇文章、单个分类进行分析。例如获取某一篇文章在不同平台的阅读量、点赞数、互动数,也可以分析某篇热点文章从发布、预热、引爆、衰退的过程;
相关阅读
推荐语:强烈推荐下这篇文章。如果网站改版时设计师和甲方的意见相左该怎么办?别吵,让数据说话。今天这篇作者手把手教你如何通过分析
Hadoop生态圈 一 ,采集,数据从哪里来?主要包括flume等; 一 ,存储,海量的数据怎样有效的存储?主要包括hdfs、Kafka; 二,计算,海量的数据怎样
在电商行业中,我们应该如何做出一份业务数据报告,让数据发挥出实际的商业意义,而不只是停留在数据表面呢?以下将从什么是业务数据报告
微软近日开源了数据处理引擎 Trill,它每天能够分析万亿次事件。 项目地址:https://github.com/Microsoft/trill 当下每毫秒处理大量
场景:给供应商主数据增加分个按钮,实现自定义的其他的客制化数据如下截图,需要的BADI增强: VENDOR_ADD_DATA_CS 和 VENDOR_ADD_DATA