排队论
MM1排队系统:
MMS模型
MMS排队模型程序(S=1时即为MM1排队模型)
s=2;%服务台数
mu=4;%单个服务台一小时内服务的顾客数
lambda=3;%单位时间(一小时)到达的顾客数
ro=lambda/mu;
ros=ro/s;
sum1=0;
for i=0:(s-1)
sum1=sum1+ro.^i/factorial(i);
end
sum2=ro.^s/factorial(s)/(1-ros);
p0=1/(sum1+sum2);
p=ro.^s.*p0/factorial(s)/(1-ros);
Lq=p.*ros/(1-ros);
L=Lq+ro;
W=L/lambda;
Wq=Lq/lambda;
fprintf('排队等待的平均人数为%5.2f人\n',Lq)
fprintf('系统内的平均人数为%5.2f人\n',L)
fprintf('平均逗留时间为%5.2f分钟\n',W*60)
fprintf('平均等待时间为%5.2f分种\n',Wq*60)
MM1模型结果的直观图显示:
clear
clc
%*****************************************
%初始化顾客源
%*****************************************
%总仿真时间
Total_time = 10;
%队列最大长度
N = 10000000000;
%到达率与服务率
lambda = 10;
mu = 6;
%平均到达时间与平均服务时间
arr_mean = 1/lambda;
ser_mean = 1/mu;
arr_num = round(Total_time*lambda*2);
events = [];
%按负指数分布产生各顾客达到时间间隔
events(1,:) = exprnd(arr_mean,1,arr_num);
%各顾客的到达时刻等于时间间隔的累积和
events(1,:) = cumsum(events(1,:));
%按负指数分布产生各顾客服务时间
events(2,:) = exprnd(ser_mean,1,arr_num);
%计算仿真顾客个数,即到达时刻在仿真时间内的顾客数
len_sim = sum(events(1,:)<= Total_time);
%*****************************************
%计算第 1个顾客的信息
%*****************************************
%第 1个顾客进入系统后直接接受服务,无需等待
events(3,1) = 0;
%其离开时刻等于其到达时刻与服务时间之和
events(4,1) = events(1,1)+events(2,1);
%其肯定被系统接纳,此时系统内共有
%1个顾客,故标志位置1
events(5,1) = 1;
%其进入系统后,系统内已有成员序号为 1
member = [1];
for i = 2:arr_num
%如果第 i个顾客的到达时间超过了仿真时间,则跳出循环
if events(1,i)>Total_time
break;
else
number = sum(events(4,member) > events(1,i));
%如果系统已满,则系统拒绝第 i个顾客,其标志位置 0
if number >= N+1
events(5,i) = 0;
%如果系统为空,则第 i个顾客直接接受服务
else
if number == 0
%其等待时间为 0
2009.1516
%PROGRAMLANGUAGEPROGRAMLANGUAGE
events(3,i) = 0;
%其离开时刻等于到达时刻与服务时间之和
events(4,i) = events(1,i)+events(2,i);
%其标志位置 1
events(5,i) = 1;
member = [member,i];
%如果系统有顾客正在接受服务,且系统等待队列未满,则 第 i个顾客进入系统
else len_mem = length(member);
%其等待时间等于队列中前一个顾客的离开时刻减去其到 达时刻
events(3,i)=events(4,member(len_mem))-events(1,i);
%其离开时刻等于队列中前一个顾客的离开时刻加上其服
%务时间
events(4,i)=events(4,member(len_mem))+events(2,i);
%标识位表示其进入系统后,系统内共有的顾客数
events(5,i) = number+1;
member = [member,i];
end
end
end
end
%仿真结束时,进入系统的总顾客数
len_mem = length(member);
%*****************************************
%输出结果
%*****************************************
%绘制在仿真时间内,进入系统的所有顾客的到达时刻和离
%开时刻曲线图(stairs:绘制二维阶梯图)
stairs([0 events(1,member)],0:len_mem);
hold on;
stairs([0 events(4,member)],0:len_mem,'.-r');
legend('到达时间 ','离开时间 ');
hold off;
grid on;
%绘制在仿真时间内,进入系统的所有顾客的停留时间和等
%待时间曲线图(plot:绘制二维线性图)
figure;
plot(1:len_mem,events(3,member),'r-*',1: len_mem,events(2,member)+events(3,member),'k-');
legend('等待时间 ','停留时间 ');
grid on;
结果:
文章最后发布于: 2018-08-29 18:48:47
相关阅读
网络 就是使用集线器或交换机将计算机连接起来构成一个网络 互联网 OSI 分层的好处: 1.每一层更改不会影响其他层; 2.有利于网络
关于er模型中的identifying relationship or non-iden
最近,主要负责项目管理和领域模型设计方面的工作,昨天在将UML类图转换为ER模型的时候,发现有identifying relationship or non-ident
网络协议概述:物理层、连接层、网络层、传输层、应用层详解 转载自:邓义兵的博客 这篇文章主要介绍了网络协议概述:物理层、连接层
如果你是瑞幸咖啡的店面经理,面对每天中午在柜台前拿着号码牌焦急等待回去上班的楼上白领,你会有什么好的改进方案吗?现在再提瑞幸咖
领域模型 编辑 本词条由“科普中国”百科科学词条编写与应用工作项目 审核 。 领域模型是对领域内的概念类或现实世界中对象的