必威体育Betway必威体育官网
当前位置:首页 > IT技术

Gamma校正原理及实现

时间:2019-09-27 16:45:39来源:IT技术作者:seo实验室小编阅读:89次「手机版」
 

Gamma校正

Gamma校正原理:

假设图像中有一个像素,值是 200 ,那么对这个像素进行校正必须执行如下步骤: 

1. 归一化 :将像素值转换为  0 ~ 1  之间的实数。 算法如下 : ( i + 0. 5)/256  这里包含 1 个除法和 1 个加法操作。对于像素  A  而言  , 其对应的归一化值为  0. 783203 。 

2. 预补偿 :根据公式  , 求出像素归一化后的 数据以  1 /gamma  为指数的对应值。这一步包含一个 求指数运算。若  gamma  值为  2. 2 ,  则  1 /gamma  为  0. 454545 , 对归一化后的  A  值进行预补偿的结果就 是  0. 783203 ^0. 454545 = 0. 894872 。 

3. 反归一化 :将经过预补偿的实数值反变换为  0  ~  255  之间的整数值。具体算法为 : f*256 - 0. 5  此步骤包含一个乘法和一个减法运算。续前 例  , 将  A  的预补偿结果  0. 894872  代入上式  , 得到  A  预补偿后对应的像素值为  228 , 这个  228  就是最后送 入显示器的数据。

 

如上所述如果直接按公式编程的话,假设图像的分辨率为 800*600 ,对它进行 gamma 校正,需要执行 48 万个浮点数乘法、除法和指数运算。效率太低,根本达不到实时的效果。 

针对上述情况,提出了一种快速算法,如果能够确知图像的像素取值范围  , 例如  , 0 ~ 255 之间的整数  , 则图像中任何一个像素值只能 是  0  到  255  这  256  个整数中的某一个 ; 在  gamma 值 已知的情况下  ,0 ~ 255  之间的任一整数  , 经过“归一 化、预补偿、反归一化”操作后 , 所对应的结果是唯一的  , 并且也落在  0 ~ 255  这个范围内。

如前例  , 已知  gamma  值为  2. 2 , 像素  A  的原始值是  200 , 就可求得 经  gamma  校正后  A  对应的预补偿值为  228 。基于上述原理  , 我们只需为  0 ~ 255  之间的每个整数执行一次预补偿操作  , 将其对应的预补偿值存入一个预先建立的  gamma  校正查找表 (LUT:Look Up Table) , 就可以使用该表对任何像素值在  0 ~ 255  之 间的图像进行  gamma  校正。

Gamma校正实现:

#include <iOStream>  
#include <OpenCV2\core\core.hpp>  
#include <opencv2\highgui\highgui.hpp>  
#include <opencv2\imgproc\imgproc.hpp>  
#include<cmath>
using namespace cv;

Mat gammaTransform(Mat &srcImage, float kFactor)
{
	
	unsigned char LUT[256];
	for (int i = 0; i < 256; i++)
	{
		float f = (i + 0.5f) / 255;
		f = (float)(pow(f, kFactor));
		LUT[i] = saturate_cast<uchar>(f*255.0f - 0.5f);
	}
	Mat resultImage = srcImage.clone();
	
	if (srcImage.channels() == 1)
	{
		
		MatIterator_<uchar> iterator = resultImage.begin<uchar>();
		MatIterator_<uchar> iteratorEnd = resultImage.end<uchar>();
		for (; iterator != iteratorEnd; iterator++)
		{
			*iterator = LUT[(*iterator)];
		}
	}
	else
	{
		
		
		MatIterator_<Vec3b> iterator = resultImage.begin<Vec3b>();
		MatIterator_<Vec3b> iteratorEnd = resultImage.end<Vec3b>();
		for (; iterator != iteratorEnd; iterator++)
		{
			(*iterator)[0] = LUT[((*iterator)[0])];//b
			(*iterator)[1] = LUT[((*iterator)[1])];//g
			(*iterator)[2] = LUT[((*iterator)[2])];//r
		}
	}
	return resultImage;
}
int main()
{
	Mat srcImage = imread("lakeWater.jpg");
	if (!srcImage.data)
	{
		printf("could not load image...\n");
		return -1;
	}
	//取两种不同的gamma值
	float gamma1 = 3.33f;
	float gamma2 = 0.33f;
	float kFactor1 = 1 / gamma1;
	float kFactor2 = 1 / gamma2;
	Mat result1 = gammaTransform(srcImage, kFactor1);
	Mat result2 = gammaTransform(srcImage, kFactor2);
	imshow("srcImage", srcImage);
	imshow("res1", result1);
	imshow("res2", result2);
	waitKey(0);
	return 0;
}

原图:

gamma=3.33的效果图:

Gamma=0.33的效果图:

相关阅读

如何理解正态倒伽马分布(Normal-inverse-gamma distri

Normal-inverse gamma distribution 又称 normal-scaled inverse gamme distriution。它是正态分布的先验分布。 但是根据我的观

StereoRectify()函数定义及用法畸变矫正与立体校正

  畸变矫正是上一篇博文的遗留问题,当畸变系数和内外参数矩阵标定完成后,就应该进行畸变的矫正,以达到消除畸变的目的,此其一。 在

Gamma函数

伽玛函数(Gamma函数),也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中

Gamma校正

Gamma校正 gamma校正(幂律变换)是一种重要的非线性变换,其是对输入图像灰度值进行指数变换,进而校正亮度偏差,通常应用于扩展暗调的细

批量大气校正高分2号(GF2)卫星数据

高分数据批量处理可以有下述5种选项。 MSS数据的批量正射校正 MSS数据批量正射校正和大气校正 PAN 数据的批量正射校正 MSS与P

分享到:

栏目导航

推荐阅读

热门阅读