混淆矩阵
原文地址:https://blog.csdn.net/qq_28448117/article/details/78219549
一:混淆矩阵
监督学习—混淆矩阵
非监督学习—匹配矩阵
矩阵每一列代表预测值,每一行代表的是实际的类别。这个名字来源于它可以非常容易的表明多个类别是否有混淆(也就是一个class被预测成另一个class)。
假设有一个用来对猫(cats)、狗(dogs)、兔子(rabbits)进行分类的系统,混淆矩阵就是为了进一步分析性能而对该算法测试结果做出的总结。假设总共有 27 只动物:8只猫, 6条狗, 13只兔子。结果的混淆矩阵如上图:
在这个混淆矩阵中,实际有8只猫,但是系统将其中3只预测成了狗;对于6条狗,其中有1条被预测成了兔子,2条被预测成了猫。从混淆矩阵中我们可以看出系统对于区分猫和狗存在一些问题,但是区分兔子和其他动物的效果还是不错的。所有正确的预测结果都在对角线上,所以从混淆矩阵中可以很方便直观的看出哪里有错误,因为他们呈现在对角线外面。
二:混淆表格
在预测分析中,混淆表格(有时候也称为混淆矩阵),是由false positives,falsenegatives,true positives和true negatives组成的两行两列的表格。它允许我们做出更多的分析,而不仅仅是局限在正确率,对于上面的矩阵,可以表示为下面的表格
查准率 = 精度 = precision
查全率 = 召回率 = recall
相关阅读
三元组的表示(1)、目的:对于在实际问题中出现的大型的稀疏矩阵,若用常规分配方法在计算机中储存,将会产生大量的内存浪费,而且在访问和
相关矩阵也叫相关系数矩阵,是由矩阵各列间的相关系数构成的。也就是说,相关矩阵第i行第j列的元素是原矩阵第i列和第j列的相关系数。
雅可比矩阵:一个多元函数的一阶偏导数以一定方式排列成的矩阵黑塞矩阵:一个多元函数的二阶偏导数以一定方式排列成的矩阵雅可比矩阵
axis off;% 去掉坐标轴 axistight;% 紧坐标轴 axisequal;% 等比坐标轴 axis([-0.1, 8.1, -1.1, 1.1]);% 坐标轴的显示范围 % gca
Eigen库 矩阵基本操作:转置矩阵,逆矩阵,伴随矩阵,特征值
#include <iostream>#include "Eigen\Dense"using namespace Eigen;using namespace std;int main(){ Matrix3d Mat1; M