通信协议
主要参考:网络编程懒人入门(一):快速理解网络通信协议(上篇)
几种计算机网络体系结构
互联网的实现,分成好几层。每一层都有自己的功能,就像建筑物一样,每一层都靠下一层支持。用户接触到的,只是最上面的一层,根本没有感觉到下面的层。要理解互联网,必须从最下层开始,自下而上理解每一层的功能。
每一层都是为了完成一种功能。为了实现这些功能,就需要大家都遵守共同的规则。大家都遵守的规则,就叫做"协议"(protocol)。
物理层
它就是把电脑连接起来的物理手段。它主要规定了网络的一些电气特性,作用是负责传送0和1的电信号。
链路层
单纯的0和1没有任何意义,必须规定解读方式:多少个电信号算一组?每个信号位有何意义?
这就是"链接层"的功能,它在"实体层"的上方,确定了0和1的分组方式。
"以太网"(Ethernet)协议,占据主导地位。
以太网规定,一组电信号构成一个数据包,叫做"帧"(Frame)。每一帧分成两个部分:标头(Head)和数据(Data)。
标头"包含数据包的一些说明项,比如发送者、接受者、数据类型等等;"数据"则是数据包的具体内容。
"标头"的长度,固定为18字节。"数据"的长度,最短为46字节,最长为1500字节。因此,整个"帧"最短为64字节,最长为1518字节。如果数据很长,就必须分割成多个帧进行发送。
MAC地址
上面提到,以太网数据包的"标头",包含了发送者和接受者的信息。那么,发送者和接受者是如何标识呢?
以太网规定,连入网络的所有设备,都必须具有"网卡"接口。数据包必须是从一块网卡,传送到另一块网卡。网卡的地址,就是数据包的发送地址和接收地址,这叫做MAC地址。
定义地址只是第一步,后面还有更多的步骤:
一块网卡怎么会知道另一块网卡的MAC地址?
回答是有一种ARP协议,可以解决这个问题。以太网数据包必须知道接收方的MAC地址,然后才能发送。
互联网是无数子网络共同组成的一个巨型网络,很像想象上海和洛杉矶的电脑会在同一个子网络,这几乎是不可能的。
必须找到一种方法,能够区分哪些MAC地址属于同一个子网络,哪些不是。如果是同一个子网络,就采用广播方式发送,否则就采用"路由"方式发送。("路由"的意思,就是指如何向不同的子网络分发数据包)。这就导致了"网络层"的诞生。它的作用是引进一套新的地址,使得我们能够区分不同的计算机是否属于同一个子网络。这套地址就叫做"网络地址",简称"网址"。
"网络层"出现以后,每台计算机有了两种地址,一种是MAC地址,另一种是网络地址。两种地址之间没有任何联系,MAC地址是绑定在网卡上的,网络地址则是管理员分配的,它们只是随机组合在一起。
网络地址帮助我们确定计算机所在的子网络,MAC地址则将数据包送到该子网络中的目标网卡。因此,从逻辑上可以推断,必定是先处理网络地址,然后再处理MAC地址。
ip协议
规定网络地址的协议,叫做IP协议。它所定义的地址,就被称为IP地址。目前,广泛采用的是IP协议第四版,简称IPv4。
IPv4这个版本规定,网络地址由32个二进制位组成。
处于同一个子网络的电脑,它们IP地址的网络部分必定是相同的。
怎样才能从IP地址,判断两台计算机是否属于同一个子网络呢?这就要用到另一个参数"子网掩码"(subnet mask)。
所谓"子网掩码",就是表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.254.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0。
IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。
IP数据包
根据IP协议发送的数据,就叫做IP数据包。不难想象,其中必定包括IP地址信息。但是前面说过,以太网数据包只包含MAC地址,并没有IP地址的栏位。那么是否需要修改数据定义,再添加一个栏位呢?
回答是不需要,我们可以把IP数据包直接放进以太网数据包的"数据"部分,因此完全不用修改以太网的规格。这就是互联网分层结构的好处:上层的变动完全不涉及下层的结构。
IP数据包也分为"标头"和"数据"两个部分:
"标头"部分主要包括版本、长度、IP地址等信息,"数据"部分则是IP数据包的具体内容。它放进以太网数据包后,以太网数据包就变成了下面这样:
IP数据包的"标头"部分的长度为20到60字节,整个数据包的总长度最大为65,535字节。因此,理论上,一个IP数据包的"数据"部分,最长为65,515字节。前面说过,以太网数据包的"数据"部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据包,分开发送了。
ARP协议
关于"网络层",还有最后一点需要说明。因为IP数据包是放在以太网数据包里发送的,所以我们必须同时知道两个地址,一个是对方的MAC地址,另一个是对方的IP地址。通常情况下,对方的IP地址是已知的,但是我们不知道它的MAC地址。
这里又可以分成两种情况:
- 1)第一种情况:如果两台主机不在同一个子网络,那么事实上没有办法得到对方的MAC地址,只能把数据包传送到两个子网络连接处的"网关"(gateway),让网关去处理;
- 2)第二种情况:如果两台主机在同一个子网络,那么我们可以用ARP协议,得到对方的MAC地址。ARP协议也是发出一个数据包(包含在以太网数据包中),其中包含它所要查询主机的IP地址,在对方的MAC地址这一栏,填的是FF:FF:FF:FF:FF:FF,表示这是一个"广播"地址。它所在子网络的每一台主机,都会收到这个数据包,从中取出IP地址,与自身的IP地址进行比较。如果两者相同,都做出回复,向对方报告自己的MAC地址,否则就丢弃这个包。
总之,有了ARP协议之后,我们就可以得到同一个子网络内的主机MAC地址,可以把数据包发送到任意一台主机之上了。
传输层
9.1传输层的由来
有了MAC地址和IP地址,我们已经可以在互联网上任意两台主机上建立通信。
接下来的问题是,同一台主机上有许多程序都需要用到网络,比如,你一边浏览网页,一边与朋友在线聊天。当一个数据包从互联网上发来的时候,你怎么知道,它是表示网页的内容,还是表示在线聊天的内容?
也就是说,我们还需要一个参数,表示这个数据包到底供哪个程序(进程)使用。这个参数就叫做"端口"(port),它其实是每一个使用网卡的程序的编号。每个数据包都发到主机的特定端口,所以不同的程序就能取到自己所需要的数据。
"传输层"的功能,就是建立"端口到端口"的通信。相比之下,"网络层"的功能是建立"主机到主机"的通信。只要确定主机和端口,我们就能实现程序之间的交流。因此,Unix系统就把主机+端口,叫做"套接字"(socket)。有了它,就可以进行网络应用程序开发了。
我们必须在数据包中加入端口信息,这就需要新的协议。最简单的实现叫做udp协议,它的格式几乎就是在数据前面,加上端口号。
UDP数据包,也是由"标头"和"数据"两部分组成:
标头"部分主要定义了发出端口和接收端口,"数据"部分就是具体的内容。然后,把整个UDP数据包放入IP数据包的"数据"部分,而前面说过,IP数据包又是放在以太网数据包之中的,所以整个以太网数据包现在变成了下面这样:
UDP数据包非常简单,"标头"部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。
TCP协议
UDP协议的优点是比较简单,容易实现,但是缺点是可靠性较差,一旦数据包发出,无法知道对方是否收到。为了解决这个问题,提高网络可靠性,TCP协议就诞生了。这个协议非常复杂,但可以近似认为,它就是有确认机制的UDP协议,每发出一个数据包都要求确认。如果有一个数据包遗失,就收不到确认,发出方就知道有必要重发这个数据包了。
因此,TCP协议能够确保数据不会遗失。它的缺点是过程复杂、实现困难、消耗较多的资源。
TCP数据包和UDP数据包一样,都是内嵌在IP数据包的"数据"部分。TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。
应用层
应用程序收到"传输层"的数据,接下来就要进行解读。由于互联网是开放架构,数据来源五花八门,必须事先规定好格式,否则根本无法解读。"应用层"的作用,就是规定应用程序的数据格式。
举例来说,TCP协议可以为各种各样的程序传递数据,比如Email、WWW、FTP等等。那么,必须有不同协议规定电子邮件、网页、FTP数据的格式,这些应用程序协议就构成了"应用层"。这是最高的一层,直接面对用户。它的数据就放在TCP数据包的"数据"部分。
因此,现在的以太网的数据包就变成下面这样:
这是从系统的角度,解释互联网是如何构成的。
相关阅读
功能: 1、确认IP包是否成功送达目标地址 2、反馈IP包被丢弃的原因 3、改善网络设定 在IP通信中,如果某个IP包因为某种原因未能到
数据封包协议规定:整个数据包包含2字节长度信息+数据包体。2字节长度信息包含本身着2字节。如:数据体是(abcdefg)7个字节,整体封包就是
部分摘自 http://www.ruanyifeng.com/blog/2012/06/ 阮一峰博客 1. 什么是HTTP协议 百度百科解释为 超文本传输协议(HTTP,HyperTex
最近工作中要用到stun,故学习了一下stun协议的知识。中文的文档没找到讲的比较好的,所以只能自己翻译了,官方文档太长就找了个谷歌排
通用IO口模拟实现I2C通信协议 1 I2C协议简介 1.1 物理层 1.2 协议层1.2.1 总线空闲与信号起始终止1.2.2 数据有效1.2.3 应答和非