必威体育Betway必威体育官网
当前位置:首页 > IT技术

【转】JMH使用说明

时间:2019-10-13 22:43:19来源:IT技术作者:seo实验室小编阅读:65次「手机版」
 

jmh

https://blog.csdn.net/lxbjkben/article/details/79410740 

JMH使用说明

一、概述

JMH,即java Microbenchmark Harness,是专门用于代码微基准测试的工具套件。何谓Micro Benchmark呢?简单的来说就是基于方法层面的基准测试,精度可以达到微秒级。当你定位到热点方法,希望进一步优化方法性能的时候,就可以使用JMH对优化的结果进行量化的分析。和其他竞品相比——如果有的话,JMH最有特色的地方就是,它是由oracle内部实现JIT的那拨人开发的,对于JIT以及JVM所谓的“profile guided optimization”对基准测试准确性的影响可谓心知肚明(smile)

JMH比较典型的应用场景有:

想准确的知道某个方法需要执行多长时间,以及执行时间和输入之间的相关性

对比接口不同实现在给定条件下的吞吐量;

查看多少百分比的请求在多长时间内完成;

二、第一个例子

接下来,我们看看如何使用JMH。

要使用JMH,首先需要准备好Maven环境,JMH的源代码以及官方提供的Sample就是使用Maven进行项目管理的,github上也有使用gradle的例子可自行搜索参考。使用mvn命令行创建一个JMH工程:

mvn archetype:generate \

  -DinteractiveMode=false \

  -DarchetypeGroupId=org.openjdk.jmh \

  -DarchetypeArtifactId=jmh-java-benchmark-archetype \

  -DgroupId=co.speedar.infra \

  -DartifactId=jmh-test \

  -Dversion=1.0

如果要在现有Maven项目中使用JMH,只需要把生成出来的两个依赖以及shade插件拷贝到项目的pom中即可:

<dependency>

<groupId>org.openjdk.jmh</groupId>

<artifactId>jmh-core</artifactId>

<version>0.7.1</version>

</dependency>

<dependency>

<groupId>org.openjdk.jmh</groupId>

<artifactId>jmh-generator-annprocess</artifactId>

<version>0.7.1</version>

<scope>provided</scope>

</dependency>

...

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-shade-plugin</artifactId>

<version>2.0</version>

<executions>

    <execution>

        <phase>package</phase>

        <goals>

            <goal>shade</goal>

        </goals>

        <configuration>

            <finalName>microbenchmarks</finalName>

            <transformers>

                <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">

                    <mainClass>org.openjdk.jmh.Main</mainClass>

                </transformer>

            </transformers>

        </configuration>

    </execution>

</executions>

</plugin>

然后,就可以着手写第一个JMH例子了:

package co.speedar.infra.test;

import java.util.concurrent.TimeUnit;

import org.openjdk.jmh.annotations.Benchmark;

import org.openjdk.jmh.annotations.BenchmarkMode;

import org.openjdk.jmh.annotations.Mode;

import org.openjdk.jmh.annotations.OutputTimeUnit;

import org.openjdk.jmh.annotations.Scope;

import org.openjdk.jmh.annotations.State;

import org.openjdk.jmh.runner.Runner;

import org.openjdk.jmh.runner.RunnerException;

import org.openjdk.jmh.runner.options.Options;

import org.openjdk.jmh.runner.options.Optionsbuilder;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

@BenchmarkMode(Mode.averageTime) // 测试方法平均执行时间

@OutputTimeUnit(TimeUnit.MICROSECONDS) // 输出结果的时间粒度为微秒

@State(Scope.Thread) // 每个测试线程一个实例

public class FirstBenchMark {

private static Logger log = LoggerFactory.getLogger(FirstBenchMark.class);

@Benchmark

public String stringConcat() {

String a = "a";

String b = "b";

String c = "c";

String s = a + b + c;

log.debug(s);

return s;

}

public static void main(String[] args) throws RunnerException {

// 使用一个单独进程执行测试,执行5遍warmup,然后执行5遍测试

Options opt = new OptionsBuilder().include(FirstBenchMark.class.getSimpleName()).forks(1).warmupIterations(5)

        .measurementIterations(5).build();

new Runner(opt).run();

}

}

在上面的测试代码中,加了几个类注解以及一个方法注解,在main方法中指明了测试的一些选项,然后使用JMH提供的Runner执行测试。在注释中提供了大致的讲解,具体的选项说明后边再详述。接下来我们直接跑起来这个测试看看结果如何。执行测试,可能会遇到报错: 

Exception in thread "main" java.lang.runtimeexception: ERROR: Unable to find the resource: /META-INF/BenchmarkList 

解决方法:

先执行mvn clean install然后再在ide中执行main方法;

或者在Eclipse中安装m2e-apt插件,然后启用Automatically configure JDT APT选项; 

然后,就可以愉快地看到测试结果如下:

# JMH 1.14.1 (released 525 days ago, please consider updating!)

# VM version: JDK 1.8.0_91, VM 25.91-b14

# VM invoker: /Library/Java/JavavirtualMachines/jdk1.8.0_91.jdk/contents/Home/jre/bin/java

# VM options: -Dfile.encoding=UTF-8

# Warmup: 5 iterations, 1 s each

# Measurement: 5 iterations, 1 s each

# Timeout: 10 min per iteration

# Threads: 1 thread, will synchronize iterations

# Benchmark mode: Average time, time/op

# Benchmark: co.speedar.infra.test.FirstBenchMark.stringConcat

# Run progress: 0.00% complete, ETA 00:00:10

# Fork: 1 of 1

# Warmup Iteration   1: 0.009 us/op

# Warmup Iteration   2: 0.011 us/op

# Warmup Iteration   3: 0.007 us/op

# Warmup Iteration   4: 0.006 us/op

# Warmup Iteration   5: 0.006 us/op

Iteration   1: 0.006 us/op

Iteration   2: 0.005 us/op

Iteration   3: 0.005 us/op

Iteration   4: 0.006 us/op

Iteration   5: 0.006 us/op

Result "stringConcat":

0.006 ±(99.9%) 0.001 us/op [Average]

(min, avg, max) = (0.005, 0.006, 0.006), stdev = 0.001

CI (99.9%): [0.005, 0.006] (assumes normal distribution)

# Run complete. Total time: 00:00:10

Benchmark                    Mode  Cnt  Score    Error  Units

FirstBenchMark.stringConcat  avgt    5  0.006 ±  0.001  us/op

测试结果表明,被测试方法平均耗时为0.006微秒,误差为±0.001微秒。

三、详细说明

3.1 基本概念

首先看看JMH的几个基本概念:

Mode 

Mode 表示 JMH 进行 Benchmark 时所使用的模式。通常是测量的维度不同,或是测量的方式不同。目前 JMH 共有四种模式:

Throughput: 整体吞吐量,例如“1秒内可以执行多少次调用”。

AverageTime: 调用的平均时间,例如“每次调用平均耗时xxx毫秒”。

SampleTime: 随机取样,最后输出取样结果的分布,例如“99%的调用在xxx毫秒以内,99.99%的调用在xxx毫秒以内”

SingleShotTime: 以上模式都是默认一次 iteration 是 1s,唯有 SingleShotTime 是只运行一次。往往同时把 warmup 次数设为0,用于测试冷启动时的性能。

Iteration 

Iteration 是 JMH 进行测试的最小单位。在大部分模式下,一次 iteration 代表的是一秒,JMH 会在这一秒内不断调用需要 benchmark 的方法,然后根据模式对其采样,计算吞吐量,计算平均执行时间等。

Warmup

Warmup 是指在实际进行 benchmark 前先进行预热的行为。为什么需要预热?因为 JVM 的 JIT 机制的存在,如果某个函数被调用多次之后,JVM 会尝试将其编译成为机器码从而提高执行速度。为了让 benchmark 的结果更加接近真实情况就需要进行预热。

3.2 注解与选项

3.2.1 常用注解说明

@BenchmarkMode 

对应Mode选项,可用于类或者方法上, 需要注意的是,这个注解的value是一个数组,可以把几种Mode集合在一起执行,还可以设置为Mode.All,即全部执行一遍。

@State 

类注解,JMH测试类必须使用@State注解,State定义了一个类实例的生命周期,可以类比Spring Bean的Scope。由于JMH允许多线程同时执行测试,不同的选项含义如下:

Scope.Thread:默认的State,每个测试线程分配一个实例;

Scope.Benchmark:所有测试线程共享一个实例,用于测试有状态实例在多线程共享下的性能;

Scope.Group:每个线程组共享一个实例;

@OutputTimeUnit 

benchmark 结果所使用的时间单位,可用于类或者方法注解,使用java.util.concurrent.TimeUnit中的标准时间单位。

@Benchmark 

方法注解,表示该方法是需要进行 benchmark 的对象。

@Setup 

方法注解,会在执行 benchmark 之前被执行,正如其名,主要用于初始化。

@TearDown 

方法注解,与@Setup 相对的,会在所有 benchmark 执行结束以后执行,主要用于资源的回收等。

@Param 

成员注解,可以用来指定某项参数的多种情况。特别适合用来测试一个函数在不同的参数输入的情况下的性能。@Param注解接收一个string数组,在@setup方法执行前转化为为对应的数据类型。多个@Param注解的成员之间是乘积关系,譬如有两个用@Param注解的字段,第一个有5个值,第二个字段有2个值,那么每个测试方法会跑5*2=10次。

3.2.2 注解使用例子

以下示例代码来自JMH官方例子,为了节省篇幅删除了头部的license声明和重复的注释。

@BenchmarkMode和@OutputTimeUnit

public class JMHSample_02_BenchmarkModes {

@Benchmark

@BenchmarkMode(Mode.Throughput)

@OutputTimeUnit(TimeUnit.SECONDS)

public void measureThroughput() throws InterruptedException {

TimeUnit.MILLISECONDS.sleep(100);

}

/*

* Mode.AverageTime measures the average execution time, and it does it

* in the way similar to Mode.Throughput.

*

* Some might say it is the reciprocal throughput, and it really is.

* There are workloads where measuring times is more convenient though.

*/

@Benchmark

@BenchmarkMode(Mode.AverageTime)

@OutputTimeUnit(TimeUnit.MICROSECONDS)

public void measureAvgTime() throws InterruptedException {

TimeUnit.MILLISECONDS.sleep(100);

}

/*

* Mode.SampleTime samples the execution time. With this mode, we are

* still running the method in a time-bound iteration, but instead of

* measuring the total time, we measure the time spent in *some* of

* the benchmark method calls.

*

* This allows us to infer the distributions, percentiles, etc.

*

* JMH also tries to auto-adjust sampling frequency: if the method

* is long enough, you will end up capturing all the samples.

*/

@Benchmark

@BenchmarkMode(Mode.SampleTime)

@OutputTimeUnit(TimeUnit.MICROSECONDS)

public void measureSamples() throws InterruptedException {

TimeUnit.MILLISECONDS.sleep(100);

}

/*

* Mode.SingleShotTime measures the single method invocation time. As the Javadoc

* suggests, we do only the single benchmark method invocation. The iteration

* time is meaningless in this mode: as soon as benchmark method stops, the

* iteration is over.

*

* This mode is useful to do cold startup tests, when you specifically

* do not want to call the benchmark method continuously.

*/

@Benchmark

@BenchmarkMode(Mode.SingleShotTime)

@OutputTimeUnit(TimeUnit.MICROSECONDS)

public void measureSingleShot() throws InterruptedException {

TimeUnit.MILLISECONDS.sleep(100);

}

/*

* We can also ask for multiple benchmark modes at once. All the tests

* above can be replaced with just a single test like this:

*/

@Benchmark

@BenchmarkMode({Mode.Throughput, Mode.AverageTime, Mode.SampleTime, Mode.SingleShotTime})

@OutputTimeUnit(TimeUnit.MICROSECONDS)

public void measureMultiple() throws InterruptedException {

TimeUnit.MILLISECONDS.sleep(100);

}

/*

* Or even...

*/

@Benchmark

@BenchmarkMode(Mode.All)

@OutputTimeUnit(TimeUnit.MICROSECONDS)

public void measureAll() throws InterruptedException {

TimeUnit.MILLISECONDS.sleep(100);

}

/*

* ============================== HOW TO RUN THIS TEST: ====================================

*

* You are expected to see the different run modes for the same benchmark.

* Note the units are different, scores are consistent with each other.

*

* You can run this test:

*

* a) Via the command line:

*    $ mvn clean install

*    $ java -jar target/benchmarks.jar JMHSample_02 -wi 5 -i 5 -f 1

*    (we requested 5 warmup/measurement iterations, single fork)

*

* b) Via the Java API:

*    (see the JMH homepage for possible caveats when running from IDE:

*      http://openjdk.java.net/projects/code-tools/jmh/)

*/

public static void main(String[] args) throws RunnerException {

Options opt = new OptionsBuilder()

        .include(JMHSample_02_BenchmarkModes.class.getSimpleName())

        .warmupIterations(5)

        .measurementIterations(5)

        .forks(1)

        .build();

new Runner(opt).run();

}

}

@State

public class JMHSample_03_States {

@State(Scope.Benchmark)

public static class BenchmarkState {

volatile double x = Math.PI;

}

@State(Scope.Thread)

public static class ThreadState {

volatile double x = Math.PI;

}

/*

* Benchmark methods can reference the states, and JMH will inject the

* APPropriate states while calling these methods. You can have no states at

* all, or have only one state, or have multiple states referenced. This

* makes building multi-threaded benchmark a breeze.

*

* For this exercise, we have two methods.

*/

@Benchmark

public void measureUnshared(ThreadState state) {

// All benchmark threads will call in this method.

//

// However, since ThreadState is the Scope.Thread, each thread

// will have it's own copy of the state, and this benchmark

// will measure unshared case.

state.x++;

}

@Benchmark

public void measureShared(BenchmarkState state) {

// All benchmark threads will call in this method.

//

// Since BenchmarkState is the Scope.Benchmark, all threads

// will share the state instance, and we will end up measuring

// shared case.

state.x++;

}

public static void main(String[] args) throws RunnerException {

Options opt = new OptionsBuilder()

        .include(JMHSample_03_States.class.getSimpleName())

        .warmupIterations(5)

        .measurementIterations(5)

        .threads(4)

        .forks(1)

        .build();

new Runner(opt).run();

}

}

@Param

@BenchmarkMode(Mode.AverageTime)

@OutputTimeUnit(TimeUnit.NANOSECONDS)

@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)

@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)

@Fork(1)

@State(Scope.Benchmark)

public class JMHSample_27_params {

/**

* In many cases, the experiments require walking the configuration space

* for a benchmark. This is needed for additional control, or investigating

* how the workload performance changes with different settings.

*/

@Param({"1", "31", "65", "101", "103"})

public int arg;

@Param({"0", "1", "2", "4", "8", "16", "32"})

public int certainty;

@Benchmark

public boolean bench() {

return Biginteger.valueOf(arg).isProbablePrime(certainty);

}

public static void main(String[] args) throws RunnerException {

Options opt = new OptionsBuilder()

        .include(JMHSample_27_Params.class.getSimpleName())

//                .param("arg", "41", "42") // Use this to selectively constrain/override parameters

        .build();

new Runner(opt).run();

}

}

3.2.3 常用选项说明

include 

benchmark 所在的类的名字,这里可以使用正则表达式对所有类进行匹配。

fork 

JVM因为使用了profile-guided optimization而“臭名昭著”,这对于微基准测试来说十分不友好,因为不同测试方法的profile混杂在一起,“互相伤害”彼此的测试结果。对于每个@Benchmark方法使用一个独立的进程可以解决这个问题,这也是JMH的默认选项。注意不要设置为0,设置为n则会启动n个进程执行测试(似乎也没有太大意义)。fork选项也可以通过方法注解以及启动参数来设置。

warmupIterations 

预热的迭代次数,默认1秒。

measurementIterations 

实际测量的迭代次数,默认1秒。

CompilerControl 

可以在@Benchmark注解中指定编译器行为。

CompilerControl.Mode.DONT_inline:This method should not be inlined. Useful to measure the method call cost and to evaluate if it worth to increase the inline threshold for the JVM.

CompilerControl.Mode.INLINE:Ask the compiler to inline this method. Usually should be used in conjunction with Mode.DONT_INLINE to check pros and cons of inlining.

CompilerControl.Mode.EXCLUDE:Do not compile this method – interpret it instead. Useful in holy wars as an argument how good is the JIT.

Group 

方法注解,可以把多个 benchmark 定义为同一个 group,则它们会被同时执行,譬如用来模拟生产者-消费者读写速度不一致情况下的表现。可以参考如下例子: 

CounterBenchmark.java

Level 

用于控制 @Setup,@TearDown 的调用时机,默认是 Level.Trial。

Trial:每个benchmark方法前后;

Iteration:每个benchmark方法每次迭代前后;

Invocation:每个benchmark方法每次调用前后,谨慎使用,需留意javadoc注释;

Threads 

每个fork进程使用多少条线程去执行你的测试方法,默认值是Runtime.getRuntime().availableProcessors()。

四、一些值得注意的地方

4.1 无用代码消除(Dead Code Elimination)

现代编译器是十分聪明的,它们会对你的代码进行推导分析,判定哪些代码是无用的然后进行去除,这种行为对微基准测试是致命的,它会使你无法准确测试出你的方法性能。JMH本身已经对这种情况做了处理,你只要记住:1.永远不要写void方法;2.在方法结束返回你的计算结果。有时候如果需要返回多于一个结果,可以考虑自行合并计算结果,或者使用JMH提供的BlackHole对象:

/*

* This demonstrates Option A:

*

* Merge multiple results into one and return it.

* This is OK when is computation is relatively heavyweight, and merging

* the results does not offset the results much.

*/

@Benchmark

public double measureRight_1() {

return Math.log(x1) + Math.log(x2);

}

/*

* This demonstrates Option B:

*

* Use explicit Blackhole objects, and sink the values there.

* (Background: Blackhole is just another @State object, bundled with JMH).

*/

@Benchmark

public void measureRight_2(Blackhole bh) {

bh.consume(Math.log(x1));

bh.consume(Math.log(x2));

}

4.2 常量折叠(Constant Folding)

常量折叠是一种现代编译器优化策略,例如,i = 320 * 200 * 32,多数的现代编译器不会真的产生两个乘法的指令再将结果储存下来,取而代之的,他们会辨识出语句的结构,并在编译时期将数值计算出来(i = 2,048,000)。

在微基准测试中,如果你的计算输入是可预测的,也不是一个@State实例变量,那么很可能会被JIT给优化掉。对此,JMH的建议是:1.永远从@State实例中读取你的方法输入;2.返回你的计算结果;3.或者考虑使用BlackHole对象;

见如下官方例子:

@State(Scope.Thread)

@BenchmarkMode(Mode.AverageTime)

@OutputTimeUnit(TimeUnit.NANOSECONDS)

public class JMHSample_10_ConstantFold {

private double x = Math.PI;

private final double wrongX = Math.PI;

@Benchmark

public double baseline() {

// simply return the value, this is a baseline

return Math.PI;

}

@Benchmark

public double measureWrong_1() {

// This is wrong: the source is predictable, and computation is foldable.

return Math.log(Math.PI);

}

@Benchmark

public double measureWrong_2() {

// This is wrong: the source is predictable, and computation is foldable.

return Math.log(wrongX);

}

@Benchmark

public double measureRight() {

// This is correct: the source is not predictable.

return Math.log(x);

}

public static void main(String[] args) throws RunnerException {

Options opt = new OptionsBuilder()

        .include(JMHSample_10_ConstantFold.class.getSimpleName())

        .warmupIterations(5)

        .measurementIterations(5)

        .forks(1)

        .build();

new Runner(opt).run();

}

}

4.3 循环展开(Loop Unwinding)

循环展开最常用来降低循环开销,为具有多个功能单元的处理器提供指令级并行。也有利于指令流水线的调度。例如:

for (i = 1; i <= 60; i++) 

 a[i] = a[i] * b + c;

1

2

可以展开成:

for (i = 1; i <= 60; i+=3)

{

a[i] = a[i] * b + c;

a[i+1] = a[i+1] * b + c;

a[i+2] = a[i+2] * b + c;

}

由于编译器可能会对你的代码进行循环展开,因此JMH建议不要在你的测试方法中写任何循环。如果确实需要执行循环计算,可以结合@BenchmarkMode(Mode.SingleShotTime)和@Measurement(BATchSize = N)来达到同样的效果。参考如下例子:

/*

* Suppose we want to measure how much it takes to sum two integers:

*/

int x = 1;

int y = 2;

/*

* This is what you do with JMH.

*/

@Benchmark

@OperationsPerInvocation(100)

public int measureRight() {

return (x + y);

}

还有这个例子:

@State(Scope.Thread)

@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)

@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)

@Fork(3)

@BenchmarkMode(Mode.AverageTime)

@OutputTimeUnit(TimeUnit.NANOSECONDS)

public class JMHSample_34_SafeLooping {

/*

* JMHSample_11_Loops warns about the dangers of using loops in @Benchmark methods.

* Sometimes, however, one needs to traverse through several elements in a dataset.

* This is hard to do without loops, and therefore we need to devise a scheme for

* safe looping.

*/

/*

* Suppose we want to measure how much it takes to execute work() with different

* arguments. This mimics a frequent use case when multiple instances with the same

* implementation, but different data, is measured.

*/

static final int BASE = 42;

static int work(int x) {

return BASE + x;

}

/*

* Every benchmark requires control. We do a trivial control for our benchmarks

* by checking the benchmark costs are growing linearly with increased task size.

* If it doesn't, then something wrong is happening.

*/

@Param({"1", "10", "100", "1000"})

int size;

int[] xs;

@Setup

public void setup() {

xs = new int[size];

for (int c = 0; c < size; c++) {

    xs[c] = c;

}

}

/*

* First, the obviously wrong way: "saving" the result into a local variable would not

* work. A sufficiently smart compiler will inline work(), and figure out only the last

* work() call needs to be evaluated. Indeed, if you run it with varying $size, the score

* will stay the same!

*/

@Benchmark

public int measureWrong_1() {

int acc = 0;

for (int x : xs) {

    acc = work(x);

}

return acc;

}

/*

* Second, another wrong way: "accumulating" the result into a local variable. While

* it would force the computation of each work() method, there are software pipelining

* effects in action, that can merge the operations between two otherwise distinct work()

* bodies. This will obliterate the benchmark setup.

*

* In this example, HotSpot does the unrolled loop, merges the $BASE operands into a single

* addition to $acc, and then does a bunch of very tight stores of $x-s. The final performance

* depends on how much of the loop unrolling happened *and* how much data is available to make

* the large strides.

*/

@Benchmark

public int measureWrong_2() {

int acc = 0;

for (int x : xs) {

    acc += work(x);

}

return acc;

}

/*

* Now, let's see how to measure these things properly. A very straight-forward way to

* break the merging is to sink each result to Blackhole. This will force runtime to compute

* every work() call in full. (We would normally like to care about several concurrent work()

* computations at once, but the memory effects from Blackhole.consume() prevent those optimization

* on most runtimes).

*/

@Benchmark

public void measureRight_1(Blackhole bh) {

for (int x : xs) {

    bh.consume(work(x));

}

}

/*

* DANGEROUS AREA, PLEASE READ THE DESCRIPTION BELOW.

*

* Sometimes, the cost of sinking the value into a Blackhole is dominating the nano-benchmark score.

* In these cases, one may try to do a make-shift "sinker" with non-inlineable method. This trick is

* *very* VM-specific, and can only be used if you are verifying the generated code (that's a good

* strategy when dealing with nano-benchmarks anyway).

*

* You SHOULD NOT use this trick in most cases. Apply only where needed.

*/

@Benchmark

public void measureRight_2() {

for (int x : xs) {

    sink(work(x));

}

}

@CompilerControl(CompilerControl.Mode.DONT_INLINE)

public static void sink(int v) {

// IT IS VERY important TO MATCH THE SIGNATURE TO AVOID AUTOBOXING.

// The method intentionally does nothing.

}

public static void main(String[] args) throws RunnerException {

Options opt = new OptionsBuilder()

        .include(JMHSample_34_SafeLooping.class.getSimpleName())

        .warmupIterations(5)

        .measurementIterations(5)

        .forks(3)

        .build();

new Runner(opt).run();

}

}

五、License声明

文中大部分例子来自JMH官方的实例工程:jmh-samples,基于节省篇幅考虑去掉了头部的license声明,现补充如下:

/*

* Copyright (c) 2014, Oracle America, Inc.

* All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions are met:

*

*  * Redistributions of source code must retain the above copyright notice,

*    this list of conditions and the following disclaimer.

*

*  * Redistributions in binary form must reproduce the above copyright

*    notice, this list of conditions and the following disclaimer in the

*    documentation and/or other materials provided with the distribution.

*

*  * Neither the name of Oracle nor the names of its contributors may be used

*    to endorse or promote products derived from this software without

*    specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT limitED TO, THE

* IMPLIED WARRANTIES OF MERCHANTAbility AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE

* LIABLE FOR ANY DIRECT, indirect, INCIDENTAL, SPECIAL, EXEMPLARY, OR

* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF

* THE POSSIBILITY OF SUCH DAMAGE.

*/

六、参考资料

JMH官方例子

Introduction to JMH

Java 并发编程笔记:JMH 性能测试框架

Java微基准测试框架JMH

常数折叠

循环展开

Using annotation processor in IDE

相关阅读

BloomFilter(布隆滤波器)原理与使用

BloomFilter在NoSql、大数据的去重、判断数据是否存在等领域有着广泛的应用。 它是一种空间效率极高的概率型算法和数据结构,用于

CKfinder和CKeditor使用笔记

JSP使用ckfinder实现Ajax文件上传 1、下载ckfinder 下载地址:CKfinder 2、解压文件 解压下载的zip文件,解压后的目录下有CKFinderJ

Android中使用file.createNewFile()无法创建文件的问

在写一个保存bitmap文件的方法的时候,遇到了题中问题。为了不出现问题,不要直接File f = new File(Environment.getExternalStorage

Fancybox的API和配置选项说明

属性名 默认值 简要说明 padding 10 浏览框内边距,和css中的padding一个意思 margin 20 浏览框外边距,和css

淘宝流量钱包怎么刷流量?使用方法是什么?

淘宝流量钱包怎么刷流量?使用方法是什么?最近有网友问小编淘宝流量钱包怎么刷流量?使用方法是什么?的有关问题,小编查阅了相关资料

分享到:

栏目导航

推荐阅读

热门阅读