指数函数图像
这里用Python逼近函数y = exp(x);同样使用泰勒函数去逼近:
exp(x) = 1 + x + (x)^2/(2!) + .. + (x)^n/(n!) + ...
#!/usr/bin/python
# -*- coding:utf-8 -*-
import numpy as np
import math
import matplotlib as mpl
import matplotlib.pyplot as plt
def calc_e_small(x):
n = 10
f = np.arange(1, n+1).cumprod()
b = np.array([x]*n).cumprod()
return np.sum(b / f) + 1
def calc_e(x):
reverse = False
if x < 0: # 处理负数
x = -x
reverse = True
ln2 = 0.69314718055994530941723212145818
c = x / ln2
a = int(c+0.5)
b = x - a*ln2
y = (2 ** a) * calc_e_small(b)
if reverse:
return 1/y
return y
if __name__ == "__main__":
t1 = np.linspace(-2, 0, 10, endpoint=False)
t2 = np.linspace(0, 3, 20)
t = np.concatenate((t1, t2))
print(t) # 横轴数据
y = np.empty_like(t)
for i, x in enumerate(t):
y[i] = calc_e(x)
print('e^', x, ' = ', y[i], '(近似值)\t', math.exp(x), '(真实值)')
# print '误差:', y[i] - math.exp(x)
plt.figure(facecolor='w')
mpl.rcparams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False
plt.plot(t, y, 'r-', t, y, 'go', linewidth=2)
plt.title(u'Taylor展式的应用 - 指数函数', fontsize=18)
plt.xlabel('X', fontsize=15)
plt.ylabel('exp(X)', fontsize=15)
plt.grid(True)
plt.show()
相关阅读
线性回归 - 机器学习多元线性回归 - 一步一步详解 - P
目录 数据导入 单变量线性回归 绘制散点图 相关系数R 拆分训练集和测试集 多变量线性回归 数据检验(判断是否可以做线性回归) 训练
一、%格式化 1.整数输出 %d # 十进制 %o # 八进制 %x # 十六进制 print("%d"%23) # 23 print("%o"%23) # 27 print("%x"%
简单说说这个意义。做了很久的c#,突然发现Python火了。就看看,估计这篇博文有点长,有点长,尽量包括主要的东西,还有点杂,浏览吧,选择自
爬取流程: 第一步:第二步:第三步:第四步:第五步:代码流程: import requests import re import json from lxml import etree impo
1. 基本用法 1)仅对于list类型的数据 a.sort() 按升序 a.sort(reverse = True) 按降序 2)对于所有可排序类型的数据 sorted(a, reve