libsvm
Support vector Machines,SVM,支持向量机
各种SVM
C" role="presentation" style="position: relative;">C-Support Vector Classication
训练向量 — xi∈Rn,i=1,…,l" role="presentation" style="position: relative;">xi∈Rn,i=1,…,l
两个类class
指标向量 — y∈Rl" role="presentation" style="position: relative;">y∈Rl,yi∈{1,−1}" role="presentation" style="position: relative;">yi∈{1,−1}
C" role="presentation" style="position: relative;">C-SVC解决如下原始优化问题:
ϕ(xi)" role="presentation" style="position: relative;">ϕ(xi)将xi" role="presentation" style="position: relative;">xi映射到更高维空间,C>0" role="presentation" style="position: relative;">C>0为正则化参数。
由于向量参数w" role="presentation" style="position: relative;">w的可能的高维度,通常我们解决如下对偶问题
e=[1,…,1]T" role="presentation" style="position: relative;">e=[1,…,1]T为全为1的向量
Q" role="presentation" style="position: relative;">Q — 一个l×l" role="presentation" style="position: relative;">l×l的半正定矩阵positive semidefinite matrix
Qij≡yiyjK(xi,xj)" role="presentation" style="position: relative;">Qij≡yiyjK(xi,xj)
K(xi,xj)≡ϕ(xi)Tϕ(xj)" role="presentation" style="position: relative;">K(xi,xj)≡ϕ(xi)Tϕ(xj) — 核函数
问题(2)解决后,使用 primal-dual relationship 原始-对偶关系,最优的w" role="presentation" style="position: relative;">w满足:
决策函数为
为进行预测,存储如下参数:
yiαi,∀i" role="presentation" style="position: relative;">yiαi,∀i
b" role="presentation" style="position: relative;">b
标签名称
其他参数 如 — 核参数
ν" role="presentation" style="position: relative;">ν-Support Vector Classication
引入了新的参数 — ν∈(0,1]" role="presentation" style="position: relative;">ν∈(0,1]
对偶问题为
当且仅当
问题才有意义
决策函数为
可用 eTα=ν" role="presentation" style="position: relative;">eTα=ν 替代 eTα≥ν" role="presentation" style="position: relative;">eTα≥ν
LIBSVM解决一个缩放版的问题,这是因为αi≤1/l" role="presentation" style="position: relative;">αi≤1/l可能过小。
若α" role="presentation" style="position: relative;">α对于对偶问题(5)是最优的
ρ" role="presentation" style="position: relative;">ρ对于原始问题(4)是最优的
则,α/ρ" role="presentation" style="position: relative;">α/ρ是带有C=1/(ρl)" role="presentation" style="position: relative;">C=1/(ρl)的C" role="presentation" style="position: relative;">C-SVM的一个最优解,因此,在LIBSVM模型中的输出为(α/ρ,b/ρ)" role="presentation" style="position: relative;">(α/ρ,b/ρ)。
Distribution Estimation (One-class SVM)
单类别SVM
无类别信息
对偶问题为
决策函数为
缩放版
ϵ" role="presentation" style="position: relative;">ϵ-Support Vector regression (ϵ" role="presentation" style="position: relative;">ϵ-SVR)
训练点集 — {(x1,z1),…,(xl,zl)}" role="presentation" style="position: relative;">{(x1,z1),…,(xl,zl)}
xi∈Rn" role="presentation" style="position: relative;">xi∈Rn — 特征向量
zi∈R1" role="presentation" style="position: relative;">zi∈R1 — 目标输出
给定参数 — C>0" role="presentation" style="position: relative;">C>0 及 ϵ>0" role="presentation" style="position: relative;">ϵ>0,支持向量回归的标准形式为:
对偶问题为
在解决问题(9)后,估计函数为
输出为 — α∗−α" role="presentation" style="position: relative;">α∗−α
ν" role="presentation" style="position: relative;">ν-Support Vector Regression (ν" role="presentation" style="position: relative;">ν-SVR)
对偶问题为
估计函数为
eT(α+α∗)≤Cν" role="presentation" style="position: relative;">eT(α+α∗)≤Cν可替换为等式
C¯=C/l" role="presentation" style="position: relative;">C¯=C/l
如下二者有相同解
1. ϵ" role="presentation" style="position: relative;">ϵ-SVR — 参数(C¯,ϵ)" role="presentation" style="position: relative;">(C¯,ϵ)
2. ν" role="presentation" style="position: relative;">ν-SVR — 参数(lC¯,ν)" role="presentation" style="position: relative;">(lC¯,ν)
性能度量
分类
回归
整体组织
相关阅读