必威体育Betway必威体育官网
当前位置:首页 > IT技术

区间dp入门

时间:2019-08-14 04:12:07来源:IT技术作者:seo实验室小编阅读:78次「手机版」
 

dp

一.什么是区间dp?

顾名思义:区间dp就是在区间上进行动态规划,求解一段区间上的最优解。主要是通过合并小区间的 最优解进而得出整个大区间上最优解的dp算法

二.核心思路

既然让我求解在一个区间上的最优解,那么我把这个区间分割成一个个小区间,求解每个小区间的最优解,再合并小区间得到大区间即可。所以在代码实现上,我可以枚举区间长度len为每次分割成的小区间长度(由短到长不断合并),内层枚举该长度下可以的起点,自然终点也就明了了。然后在这个起点终点之间枚举分割点,求解这段小区间在某个分割点下的最优解。

板子:

for(int len = 1;len<=n;len++){//枚举长度
        for(int j = 1;j+len<=n+1;j++){//枚举起点,ends<=n
            int ends = j+len - 1;
            for(int i = j;i<ends;i++){//枚举分割点,更新小区间最优解
                dp[j][ends] = min(dp[j][ends],dp[j][i]+dp[i+1][ends]+something);
            }
        }
    }

三.朴素区间dp(n^3)

例题:石子归并1

传送门:戳我呀

转移方程:

dp[j][ends] = min(dp[j][ends],dp[j][i]+dp[i+1][ends]+weigth[i][ends]);

j~ends堆合并 = 较小的(原来, 分割点i坐部分重量 + 分割点i右边部分重量 + 合并后两堆总重量)

注:可以用sum[j] - sum[i - 1]表示i~j堆的重量!

代码:

#include <iOStream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f
int stone[105];
int dp[105][105];
int sum[105];
int main()
{
    int n;
    scanf("%d",&n);
    memset(sum,0,sizeof(sum));
    memset(dp,INF,sizeof(dp));
    for(int  i =1;i<=n;i++){
        scanf("%d",&stone[i]);
        sum[i] = sum[i - 1] + stone[i];//重量
        dp[i][i] = 0;
    }
    for(int len = 1;len<=n;len++){//枚举长度
        for(int j = 1;j+len<=n+1;j++){//枚举起点,ends<=n
            int ends = j+len - 1;
            for(int i = j;i<ends;i++){//枚举分割点
                dp[j][ends] = min(dp[j][ends],dp[j][i]+dp[i+1][ends]+sum[ends]-sum[j-1]);//更新状态
            }
        }
    }
    cout<<dp[1][n]<<endl;
    return 0;
}

四.题目变形(线性变环状)

例题:石子归并2

题意:原题与上面相同,但是石子排列由线性排列变成环状排列,求解

思路:环状以后合并区间的情况就可以从后往前合并,最后合并完成可能是1~n,2~n~1,3~n~2.....这种n个石子合并的情况。所以我们可以破环成链,将前n-1各元素也放到n后面构成一个线性的环状序列,在对这个序列dp即可

代码:codevs 2102环状石子归并求最大值和最小值

#include <iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f
int stone[105];
int dpmin[205][205];//最小
int dpmax[205][205];//最大
int sum[205];
int main()
{
    int n;
    scanf("%d",&n);
    memset(sum,0,sizeof(sum));
    memset(dpmin,INF,sizeof(dpmin));
    memset(dpmax,-1,sizeof(dpmax));
    for(int  i =1;i<=n;i++){
        scanf("%d",&stone[i]);
        sum[i] = sum[i - 1] + stone[i];
        dpmin[i][i] = 0;
        dpmax[i][i] = 0;
    }
    for(int i = 1;i<=n;i++){
        sum[i+n] = sum[i+n-1]+stone[i];//展开的n后面的n-1~1重量
        dpmin[i+n][i+n] = 0;
        dpmax[i+n][i+n] = 0;
    }
    for(int len = 1;len<=n;len++){//长度还是最大n
        for(int j = 1;j+len<=2*n;j++){//起点枚举最大到2*n-1,ends<=2*n-1
            int ends = j+len - 1;
            for(int i = j;i<ends;i++){//注意!i<ends!!!因为i=ends时,dp[ends+1][ends]是不成立的!
                dpmin[j][ends] = min(dpmin[j][ends],dpmin[j][i]+dpmin[i+1][ends]+sum[ends]-sum[j-1]);
                dpmax[j][ends] = max(dpmax[j][ends],dpmax[j][i]+dpmax[i+1][ends]+sum[ends]-sum[j-1]);
            }
        }
    }
    int ansmin = 0xfffffff;
    int ansmax = -1;
    for(int i = 1;i<=n;i++){
        ansmin = min(ansmin,dpmin[i][i+n-1]);//找1~n,2~n~1,3~n~2....的合并n个堆的中最大和最小的值
        ansmax = max(ansmax,dpmax[i][i+n-1]);
    }
    cout<<ansmin<<endl;
    cout<<ansmax<<endl;
    return 0;
}

五.时间优化(四边形优化,n^2)

思路:在查找最优分割点的时候,我们浪费了大量时间。那么我们可以把最优分割点保存下来,在查找的时候利用保存的最优分割点来优化查找过程。

四边形不等式优化:

(1)功能:用来寻找,s[i][j](i~j的最优分割点)与其他分割点的关系

(2)不等式内容:如果某东西满足a<b<=c<d且f[a][c]+f[b][d]<=f[a][d]+f[b][c],则说这个东西满足四边形不等式。简而言之:交叉小于包含!

(3)结论关系:s[i][j-1]<=s[i][j]<=s[i+1][j] 

(4)证明过程:

0.证明w满足四边形不等式,这里w是m的附属量,形如m[i,j]=opt{m[i,k]+m[k,j]+w[i,j]},此时大多要先证明w满足条件才能进一步证明m满足条件

1.证明m满足四边形不等式

2.证明s[i,j-1]≤s[i,j]≤s[i+1,j]

(5)证明请参考:点击打开链接

代码:(以石子归并v2为例)

#include <iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f
int dp[2005][2005];
int sum[2005];
int relation[2005][2005];
int num[2005];
int main()
{
    int n;
    scanf("%d",&n);
    memset(sum,0,sizeof(sum));
    memset(dp,0x3f,sizeof(dp));
    for(int i = 1;i<=n;i++){
        scanf("%d",&num[i]);
        dp[i][i] = 0;
        relation[i][i] = i;
        sum[i] = sum[i-1] + num[i];
    }
    for(int i = 1;i<=n;i++){
        sum[i+n] = sum[i+n-1] +num[i];
        relation[i+n][i+n] = i+n;//分割点初始化
        dp[i+n][i+n] = 0;
    }
    for(int len = 1;len<=n;len++){
        for(int j = 1;j+len<=2*n;j++){
            int ends = j+len - 1;
            for(int k = relation[j][ends-1];k<=relation[j+1][ends];k++){//k的范围
                if(dp[j][ends]>dp[j][k]+dp[k+1][ends]+sum[ends]-sum[j-1])
                {
                    dp[j][ends]=dp[j][k]+dp[k+1][ends]+sum[ends]-sum[j-1];
                    relation[j][ends] = k;
                }
            }
        }
    }
    int ans = 0xfffffff;//一定要开0xfffffff不然错QAQ
    for(int i = 1;i<=n;i++){
        ans = min(ans,dp[i][i+n-1]);
    }
    printf("%d\n",ans);
    return 0;
}

六.四道入门题目(难点在于怎么找状态转移方程)

1.Poj2955 括号匹配(一)

(1)题意:给出一个的只有'(',')','[',']'四种括号组成的字符串,求 最多 有多少个括号满足题目里所描述的完全匹配。

(2)思路:这里的状态转移是以一个if为基础的,如果s[i]与s[j]匹配,那么明显的dp[i][j] = dp[i+1][j-1]+2;然后在这个基础上枚举分割点k.

(3)状态转移方程:dp[i][j]表示第i~j个字符间的最大匹配字符数。

if(s[i] 与 s[j]匹配) dp[i][j] = d[[i+1][j-1] +2;

dp[i][j] = max(dp[i][j],dp[i][k]+dp[k+1][j]);

代码:

#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int dp[105][105];
int main()
{
    char s[105];
    while(scanf("%s",s+1)!=EOF)
    {
        memset(dp,0,sizeof(dp));//dp初始化为0,因为一方面是找最大之,一方面初始匹配数为0
        int len = strlen(s+1);//dp[i][i]不用处理,因为自己和自己不匹配就是0
        if(s[1]=='e')break;
        for(int l = 1;l<=len;l++){
            for(int i = 1;i+l<=len+1;i++){
                int j= i+l-1;
                if((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']')){//如果匹配,先更新
                    dp[i][j] = dp[i+1][j-1]+2;
                }
                for(int k = i;k<j;k++){//k<j
                    dp[i][j] = max(dp[i][j],dp[i][k]+dp[k+1][j]);
                }
            }
        }
        cout<<dp[1][len]<<endl;
    }
    return 0;
}

2.Poj1651 抽卡片

(1)题意:给你n个数字,要求不能删除两端点的数字,然后删除其他数字的代价是该数字和左右相邻数字的乘积,问把数字(除端点)删完后的最小总代价。

(2)思路:因为最后都要删掉中间所有的数字,所以我们分隔一个个小区间删数字,合并区间求最小。那么我们的状态就是目前删掉的数字区间,但是我们分割的时候的意思是抽一个卡片出来,所以这个卡片不能在已经抽出的状态里面,所以dp[i][j]里面是不包含j卡片的!

(3)状态转移方程:dp[i][j]表示抽出第i~j-1张卡片时候的最小值

dp[i][j] = min(dp[i][j],dp[i][k] + dp[k+1][j] +num[i-1]*num[k]*num[j]);

代码:

#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int dp[105][105];
int num[105];
int main()
{
    int N;
    cin>>N;
    memset(dp,0x3f,sizeof(dp));//dp初始化为inf,因为找最小值
    for(int i = 1;i<=N;i++){
        cin>>num[i];
        dp[i][i] = 0;//dp[i][i]要初始化,作为由小到大累计的初始条件,自己取出自己就是为0
    }
    for(int len = 1;len<=N;len++){
        for(int i = 2;i+len<=N+1;i++){//起点从2开始,因为不包括两端点
            int j = i+len-1;
            for(int k = i;k<j;k++){
                dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]+num[i-1]*num[k]*num[j]);
            }
        }
    }
    cout<<dp[2][N]<<endl;//由dp[i][j]的定义,输出合并第2~N-1个卡片的结果
    return 0;
}

3.整数划分(四)

(1)题意:给出两个整数 n , m ,要求在 n 中加入m - 1 个乘号,将n分成m段,求出这m段的最大乘积

(2)思路:这里给的乘号是有限个,所以状态方程里必须包含使用乘号的个数,此外还要包含区间长度。所以怎么用二维dp实现包含m和n,我们可以用dp[i][j]表示在第1~i个字符里插入j个乘号的最大值。

(3)状态转移方程 dp[i][j]表示在第1~i个字符里插入j个乘号的最大值;用num[i][j]表示第i~j个字符表示的数字;

dp[i][j] = max(dp[i][j],dp[k][j-1]*num[k+1][i])

代码:

#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
ll dp[50][50];
ll num[50][50];
int main()
{
    int T;
    scanf("%d",&T);
    char s[100];
    while(T--)
    {
        int m;
        scanf("%s%d",s+1,&m);
        int len = strlen(s+1);
        memset(dp,0,sizeof(dp));//初始化dp
        memset(num,0,sizeof(num));
        for(int i = 1; i<=len; i++)
        {

            for(int j = i; j<=len; j++)
            {
                for(int k = i;k<=j;k++){
                    num[i][j]*=10;
                    num[i][j]+=(s[k]-'0');
                }
            }
            dp[i][0] = num[1][i];//初始插入0个乘号时是自己,由小到大累计的基础
        }
        for(int j = 1;j<m;j++){//乘号个数由1~m-1个
            for(int i = 1;i<=len;i++){//结尾坐标(表示长度)
                for(int k = 1;k<i;k++){//分割点插入第j个乘号
                    dp[i][j] = max(dp[i][j],dp[k][j-1]*num[k+1][i]);
                }
            }
        }
        cout<<dp[len][m-1]<<endl;//输出在1~len插入m-1个乘号的结果
    }
    return 0;
}

4.最多回文子串 hdu4632

(1)题意:给你一个字符串,求出其最多的可构成的回文字串(不要求连续),注:这里不同的回文字串只要求位置不同即可视为不同,如:aaaaa 的最多回文子串数目是 31.

(2)思路:用dp[i][j]表示状态,表示i~j里最多的回文字串数目,假设现在我们要求dp[i][j]:

a.首先:由前一个状态知:dp[i][j] = dp[i+1][j]并上dp[i][j-1] (因为区间尽可能大而且状态要在dp[i][j]之前,而且回文子串不要求 连续),由容斥原理得:dp[i+1][j] U dp[i][j-1] = dp[i+1][j]+dp[i][j-1] - dp[i+1][j] n dp[i][j-1]

                                                           =  dp[i+1][j]+dp[i][j-1] - dp[i+1][j-1]

注意:这是一个固定的状态,每一个状态都由这个公式推出初始状态,是必须的,不是可选择地

b.其次:如果s[i] == s[j] ,那么两端单独就可以构成回文子序列,而且与dp[i+1][j],dp[i][j-1],dp[i+1][j-1],中的回文序列又可以构成新的回文序列,所以此时dp[i][j] = dp[i+1][j] U dp[i][j-1] + dp[i+1][j-1] +1;而dp[i][j]已经更新为 dp[i+1][j] U dp[i][j-1],所以dp[i][j] = dp[i][j] + dp[i+1][j-1] +1;

(3)状态转移方程: dp[i][j]表示i~j内最多的回文字串数目

dp[i][j] = dp[i+1][j]+dp[i][j-1] -dp[i+1][j-1] (容斥)

if(s[i] == s[j]) dp[i][j] = dp[i][j] +dp[i+1][j-1] +1; (思维)

注:这里因为容斥时有减法,所以要先加上模再取模,要不会出

现负数!

代码:

#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
char s[1005];
int dp[1005][1005];
int main()
{
    int T;
    scanf("%d",&T);
    int t = 0;
    while(T--){
        t++;
        scanf("%s",s+1);
        memset(dp,0,sizeof(dp));
        int len = strlen(s+1);
        for(int i = 1;i<=len;i++)dp[i][i] = 1;//自己是长度为1的
        for(int l = 1;l<=len;l++){
            for(int i = 1;i+l<=len+1;i++){
                int j = i+l-1;//容斥原理 dp[i][j] = dp[i+1][j]并dp[i][j-1] (因为是自序列可以不连续)
                dp[i][j] = (dp[i+1][j] + dp[i][j-1] - dp[i+1][j-1]+10007)%10007;
                if(s[i] == s[j])dp[i][j]=(dp[i][j]+dp[i+1][j-1] + 1)%10007;//如果两端相等,dp[i][j] = 原来的 + 两端与中间每一个回文也可以构成回文(dp[i+1][j-1]) + 两端单独构成一个回文(1)!!!
            }
        }
        printf("Case %d: %d\n",t,dp[1][len]);

    }
    return 0;
}

相关阅读

分享到:

栏目导航

推荐阅读

热门阅读