bp神经网络
文章来自:http://www.cnblogs.com/heaad/ 本文主要内容包括: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 。 第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。 一种解决方法是用已有的数据训练一个神经网络用作分类器。 如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。 第一节、神经网络基本原理 1. 人工神经元( Artificial Neuron )模型 人工神经元是神经网络的基本元素,其原理可以用下图表示: 图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为: 图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ] 则神经元的输出可以表示为向量相乘的形式: 若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。 图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。 2. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。 (1) 线性函数( Liner Function ) (2) 斜面函数( Ramp Function ) (3) 阈值函数( Threshold Function ) 以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。 (4) S形函数( Sigmoid Function ) 该函数的导函数: (5) 双极S形函数 该函数的导函数: S形函数与双极S形函数的图像如下: 图3. S形函数与双极S形函数图像 双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。 由于S形函数与双极S形函数都是可导的(导函数是连续函数),因此适合用在bp神经网络中。(BP算法要求激活函数可导) 3. 神经网络模型 神经网络是由大量的神经元互联而构成的网络。根据网络中神经元的互联方式,常见网络结构主要可以分为下面3类: (1) 前馈神经网络 ( Feedforward Neural Networks ) 前馈网络也称前向网络。这种网络只在训练过程会有反馈信号,而在分类过程中数据只能向前传送,直到到达输出层,层间没有向后的反馈信号,因此被称为前馈网络。感知机( perceptron)与BP神经网络就属于前馈网络。 图4 中是一个3层的前馈神经网络,其中第一层是输入单元,第二层称为隐含层,第三层称为输出层(输入单元不是神经元,因此图中有2层神经元)。 图4. 前馈神经网络 对于一个3层的前馈神经网络N,若用X表示网络的输入向量,W1~W3表示网络各层的连接权向量,F1~F3表示神经网络3层的激活函数。 那么神经网络的第一层神经元的输出为: O1 = F1( XW1 ) 第二层的输出为: O2 = F2 ( F1( XW1 ) W2 ) 输出层的输出为: O3 = F3( F2 ( F1( XW1 ) W2 ) W3 ) 若激活函数F1~F3都选用线性函数,那么神经网络的输出O3将是输入X的线性函数。因此,若要做高次函数的逼近就应该选用适当的非线性函数作为激活函数。 (2) 反馈神经网络 ( Feedback Neural Networks ) 反馈型神经网络是一种从输出到输入具有反馈连接的神经网络,其结构比前馈网络要复杂得多。典型的反馈型神经网络有:Elman网络和Hopfield网络。 图5. 反馈神经网络 (3) 自组织网络( SOM ,Self-Organizing Neural Networks ) 自组织神经网络是一种无导师学习网络。它通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数与结构。 图6. 自组织网络 4. 神经网络工作方式 神经网络运作过程分为学习和工作两种状态。 (1)神经网络的学习状态 网络的学习主要是指使用学习算法来调整神经元间的联接权,使得网络输出更符合实际。学习算法分为有导师学习( Supervised Learning )与无导师学习( Unsupervised Learning )两类。 有导师学习算法将一组训练集 ( training set )送入网络,根据网络的实际输出与期望输出间的差别来调整连接权。有导师学习算法的主要步骤包括: 1) 从样本集合中取一个样本(Ai,Bi); 2) 计算网络的实际输出O; 3) 求D=Bi-O; 4) 根据D调整权矩阵W; 5) 对每个样本重复上述过程,直到对整个样本集来说,误差不超过规定范围。 BP算法就是一种出色的有导师学习算法。 无导师学习抽取样本集合中蕴含的统计特性,并以神经元之间的联接权的形式存于网络中。 Hebb学习律是一种经典的无导师学习算法。 (2) 神经网络的工作状态 神经元间的连接权不变,神经网络作为分类器、预测器等使用。 下面简要介绍一下Hebb学习率与Delta学习规则 。 (3) 无导师学习算法:Hebb学习率 Hebb算法核心思想是,当两个神经元同时处于激发状态时两者间的连接权会被加强,否则被减弱。 为了理解Hebb算法,有必要简单介绍一下条件反射实验。巴甫洛夫的条件反射实验:每次给狗喂食前都先响铃,时间一长,狗就会将铃声和食物联系起来。以后如果响铃但是不给食物,狗也会流口水。 图7. 巴甫洛夫的条件反射实验 受该实验的启发,Hebb的理论认为在同一时间被激发的神经元间的联系会被强化。比如,铃声响时一个神经元被激发,在同一时间食物的出现会激发附近的另一个神经元,那么这两个神经元间的联系就会强化,从而记住这两个事物之间存在着联系。相反,如果两个神经元总是不能同步激发,那么它们间的联系将会越来越弱。 Hebb学习律可表示为: 其中wij表示神经元j到神经元i的连接权,yi与yj为两个神经元的输出,a是表示学习速度的常数。若yi与yj同时被激活,即yi与yj同时为正,那么Wij将增大。若yi被激活,而yj处于抑制状态,即yi为正yj为负,那么Wij将变小。 (4) 有导师学习算法:Delta学习规则 Delta学习规则是一种简单的有导师学习算法,该算法根据神经元的实际输出与期望输出差别来调整连接权,其数学表示如下: 其中Wij表示神经元j到神经元i的连接权,di是神经元i的期望输出,yi是神经元i的实际输出,xj表示神经元j状态,若神经元j处于激活态则xj为1,若处于抑制状态则xj为0或-1(根据激活函数而定)。a是表示学习速度的常数。假设xi为1,若di比yi大,那么Wij将增大,若di比yi小,那么Wij将变小。 Delta规则简单讲来就是:若神经元实际输出比期望输出大,则减小所有输入为正的连接的权重,增大所有输入为负的连接的权重。反之,若神经元实际输出比期望输出小,则增大所有输入为正的连接的权重,减小所有输入为负的连接的权重。这个增大或减小的幅度就根据上面的式子来计算。 (5)有导师学习算法:BP算法 采用BP学习算法的前馈型神经网络通常被称为BP网络。 图8. 三层BP神经网络结构 BP网络具有很强的非线性映射能力,一个3层BP神经网络能够实现对任意非线性函数进行逼近(根据Kolrnogorov定理)。一个典型的3层BP神经网络模型如图7所示。 BP网络的学习算法占篇幅较大,我打算在下一篇文章中介绍。 第二节、神经网络实现 1. 数据预处理 在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。下面简要介绍归一化处理的原理与方法。 (1) 什么是归一化? 数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如(0.1,0.9) 。 (2) 为什么要归一化处理? <1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。 <2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。 <3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。 <4>S形激活函数在(0,1)区间以外区域很平缓,区分度太小。例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。 (3) 归一化算法 一种简单而快速的归一化算法是线性转换算法。线性转换算法常见有两种形式: <1> y = ( x - min )/( max - min ) 其中min为x的最小值,max为x的最大值,输入向量为x,归一化后的输出向量为y 。上式将数据归一化到 [ 0 , 1 ]区间,当激活函数采用S形函数时(值域为(0,1))时这条式子适用。 <2> y = 2 * ( x - min ) / ( max - min ) - 1 这条公式将数据归一化到 [ -1 , 1 ] 区间。当激活函数采用双极S形函数(值域为(-1,1))时这条式子适用。 (4) Matlab数据归一化处理函数 Matlab中归一化处理数据可以采用premnmx , postmnmx , tramnmx 这3个函数。 <1> premnmx 语法:[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t) 参数: pn: p矩阵按行归一化后的矩阵 minp,maxp:p矩阵每一行的最小值,最大值 tn:t矩阵按行归一化后的矩阵 mint,maxt:t矩阵每一行的最小值,最大值 作用:将矩阵p,t归一化到[-1,1] ,主要用于归一化处理训练数据集。 <2> tramnmx 语法:[pn] = tramnmx(p,minp,maxp) 参数: minp,maxp:premnmx函数计算的矩阵的最小,最大值 pn:归一化后的矩阵 作用:主要用于归一化处理待分类的输入数据。 <3> postmnmx 语法: [p,t] = postmnmx(pn,minp,maxp,tn,mint,maxt) 参数: minp,maxp:premnmx函数计算的p矩阵每行的最小值,最大值 mint,maxt:premnmx函数计算的t矩阵每行的最小值,最大值 作用:将矩阵pn,tn映射回归一化处理前的范围。postmnmx函数主要用于将神经网络的输出结果映射回归一化前的数据范围。 2. 使用Matlab实现神经网络 使用Matlab建立前馈神经网络主要会使用到下面3个函数: newff :前馈网络创建函数 train:训练一个神经网络 sim :使用网络进行仿真 下面简要介绍这3个函数的用法。 (1) newff函数 <1>newff函数语法 newff函数参数列表有很多的可选参数,具体可以参考Matlab的帮助文档,这里介绍newff函数的一种简单的形式。 语法:net = newff ( A, B, {C} ,‘trainFun’) 参数: A:一个n×2的矩阵,第i行元素为输入信号xi的最小值和最大值; B:一个k维行向量,其元素为网络中各层节点数; C:一个k维字符串行向量,每一分量为对应层神经元的激活函数; trainFun :为学习规则采用的训练算法。 <2>常用的激活函数 常用的激活函数有: a) 线性函数 (Linear transfer function) f(x) = x 该函数的字符串为’purelin’。 b) 对数S形转移函数( Logarithmic sigmoid transfer function ) 该函数的字符串为’logsig’。 c) 双曲正切S形函数 (Hyperbolic tangent sigmoid transfer function ) 也就是上面所提到的双极S形函数。 该函数的字符串为’ tansig’。 Matlab的安装目录下的toolbox\nnet\nnet\nntransfer子目录中有所有激活函数的定义说明。 <3>常见的训练函数 常见的训练函数有: traingd :梯度下降BP训练函数(Gradient descent backpropagation) traingdx :梯度下降自适应学习率训练函数 <4>网络配置参数 一些重要的网络配置参数如下: net.trainparam.goal :神经网络训练的目标误差 net.trainparam.show : 显示中间结果的周期 net.trainparam.epochs :最大迭代次数 net.trainParam.lr : 学习率 (2) train函数 网络训练学习函数。 语法:[ net, tr, Y1, E ] = train( net, X, Y ) 参数: X:网络实际输入 Y:网络应有输出 tr:训练跟踪信息 Y1:网络实际输出 E:误差矩阵 (3) sim函数 语法:Y=sim(net,X) 参数: net:网络 X:输入给网络的K×N矩阵,其中K为网络输入个数,N为数据样本数 Y:输出矩阵Q×N,其中Q为网络输出个数 (4) Matlab BP网络实例 我将Iris数据集分为2组,每组各75个样本,每组中每种花各有25个样本。其中一组作为以上程序的训练样本,另外一组作为检验样本。为了方便训练,将3类花分别编号为1,2,3 。 使用这些数据训练一个4输入(分别对应4个特征),3输出(分别对应该样本属于某一品种的可能性大小)的前向网络。 Matlab程序如下: %读取训练数据 [f1,f2,f3,f4,class] = textread('trainData.txt' , '%f%f%f%f%f',150); %特征值归一化 [input,Mini,maxI] = premnmx( [f1 , f2 , f3 , f4 ]') ; %构造输出矩阵 s = length( class) ; output = zeros( s , 3 ) ; for i = 1 : s output( i , class( i ) ) = 1 ; end %创建神经网络 net = newff( minmax(input) , [10 3] , { 'logsig' 'purelin' } , 'traingdx' ) ; %设置训练参数 net.trainparam.show = 50 ; net.trainparam.epochs = 500 ; net.trainparam.goal = 0.01 ; net.trainParam.lr = 0.01 ; %开始训练 net = train( net, input , output' ) ; %读取测试数据 [t1 t2 t3 t4 c] = textread('testData.txt' , '%f%f%f%f%f',150); %测试数据归一化 testInput = tramnmx ( [t1,t2,t3,t4]' , minI, maxI ) ; %仿真 Y = sim( net , testInput ) %统计识别正确率 [s1 , s2] = size( Y ) ; hitNum = 0 ; for i = 1 : s2 [m , Index] = max( Y( : , i ) ) ; if( Index == c(i) ) hitNum = hitNum + 1 ; end end sprintf('识别率是 %3.3f%%',100 * hitNum / s2 ) 以上程序的识别率稳定在95%左右,训练100次左右达到收敛,训练曲线如下图所示: 图9. 训练性能表现 (5)参数设置对神经网络性能的影响 我在实验中通过调整隐含层节点数,选择不通过的激活函数,设定不同的学习率, <1>隐含层节点个数 隐含层节点的个数对于识别率的影响并不大,但是节点个数过多会增加运算量,使得训练较慢。 <2>激活函数的选择 激活函数无论对于识别率或收敛速度都有显著的影响。在逼近高次曲线时,S形函数精度比线性函数要高得多,但计算量也要大得多。 <3>学习率的选择 学习率影响着网络收敛的速度,以及网络能否收敛。学习率设置偏小可以保证网络收敛,但是收敛较慢。相反,学习率设置偏大则有可能使网络训练不收敛,影响识别效果。 参考文献 [1] Andrew Kirillov. Neural Networks on C#. [Online]. http://www.codeproject.com/KB/recipes/aforge_neuro.aspx 2006.10 [2] Sacha Barber. AI : Neural Network for beginners. [Online]. http://www.codeproject.com/KB/recipes/NeuralNetwork_1.aspx 2007.5 [3] Richard O. Duda, Peter E. Hart and David G. Stork. 模式分类. 机械工业出版社. 2010.4 [4] Wikipedia. Iris flower data set. [Online]. http://en.wikipedia.org/wiki/Iris_flower_data_set |
文章最后发布于: 2018-07-19 21:55:24
相关阅读
软件测试方法种类繁多,有白盒测试、黑盒测试、静态测试、动态测试、集成测试等等,记忆起来容易混乱,傻傻分不清楚,如果把软件测试方法
Mbps 即 Milionbit pro second(百万位每秒);Kbps 即 Kilobit pro second(千位每秒);bps 即 bit pro second(位每秒);速度单位,bit即比特,通
从字面上来了解淘宝店铺的分类导航,我们能够很清楚的知道它就是指的方向,能够帮助到各位买家们根据这个分类导航来找到顾客想要购买
作者 | @Aloys (
WIndows API分类 基础服务 (Base Services) 提供对windows系统可用的基础资源的访问接口: 他们都是以dll方式提供 大家都