必威体育Betway必威体育官网
当前位置:首页 > IT技术

蚁群算法

时间:2019-10-05 20:13:11来源:IT技术作者:seo实验室小编阅读:69次「手机版」
 

蚁群算法

二、基于TSP问题的基本蚁群算法

1Matlab程序

%%%一个旅行商人要拜访全国31个省会城市,需要选择最短的路径%%%%
 
%%%蚁群算法解决TSP问题%%%%%%%

clear all; %清除所有变量
close all; %清图
clc ;      %清屏
m=50;    %% m 蚂蚁个数
Alpha=1;  %% Alpha 表征信息素重要程度的参数
Beta=5;  %% Beta 表征启发式因子重要程度的参数
Rho=0.1; %% Rho 信息素蒸发系数
NC_max=200; %%最大迭代次数
Q=100;         %%信息素增加强度系数
 
C=[
1304 2312;
3639 1315;
4177 2244;
3712 1399;
3488 1535;
3326 1556;
3238 1229;
4196 1004;
4312 790;
4386 570;
3007 1970;
2562 1756;
2788 1491;
2381 1676;
1332 695;
3715 1678;
3918 2179;
4061 2370;
3780 2212;
3676 2578;
4029 2838;
4263 2931;
3429 1908;
3507 2367;
3394 2643;
3439 3201;
2935 3240;
3140 3550;
2545 2357;
2778 2826;
2370 2975
];                %%31个省会坐标
%%-------------------------------------------------------------------------
%% 主要符号说明
%% C n个城市的坐标,n×2的矩阵
%% NC_max 最大迭代次数
%% m 蚂蚁个数
%% Alpha 表征信息素重要程度的参数
%% Beta 表征启发式因子重要程度的参数
%% Rho 信息素蒸发系数
%% Q 信息素增加强度系数
%% R_best 各代最佳路线
%% L_best 各代最佳路线的长度
%%=========================================================================
%%第一步:变量初始化
n=size(C,1);%n表示问题的规模(城市个数)
D=zeros(n,n);%D表示完全图的赋权邻接矩阵
for i=1:n
    for j=1:n
        if i~=j
            D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
        else
            D(i,j)=eps;      %i=j时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示
        end
        D(j,i)=D(i,j);   %对称矩阵
    end
end
Eta=1./D;          %Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n);     %Tau为信息素矩阵
Tabu=zeros(m,n);   %存储并记录路径的生成
NC=1;               %迭代计数器,记录迭代次数
R_best=zeros(NC_max,n);       %各代最佳路线
L_best=inf.*ones(NC_max,1);   %各代最佳路线的长度
L_ave=zeros(NC_max,1);        %各代路线的平均长度
 
while NC<=NC_max        %停止条件之一:达到最大迭代次数,停止
    %%第二步:将m只蚂蚁放到n个城市上
    Randpos=[];   %随即存取
    for i=1:(ceil(m/n))
        Randpos=[Randpos,randperm(n)];
    end
    Tabu(:,1)=(Randpos(1,1:m))';   
    %%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
    for j=2:n     %所在城市不计算
        for i=1:m
            visited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问
            J=zeros(1,(n-j+1));       %待访问的城市
            P=J;                      %待访问城市的选择概率分布
            Jc=1;
            for k=1:n
                if length(find(visited==k))==0   %开始时置0
                    J(Jc)=k;
                    Jc=Jc+1;                         %访问的城市个数自加1
                end
            end
            %下面计算待选城市的概率分布
            for k=1:length(J)
                P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
            end
            P=P/(sum(P));
            %按概率原则选取下一个城市
            Pcum=cumsum(P);     %cumsum,元素累加即求和
            Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线
            to_visit=J(Select(1));
            Tabu(i,j)=to_visit;
        end
    end
    if NC>=2
        Tabu(1,:)=R_best(NC-1,:);
    end
    %%第四步:记录本次迭代最佳路线
    L=zeros(m,1);     %开始距离为0,m*1的列向量
    for i=1:m
        R=Tabu(i,:);
        for j=1:(n-1)
            L(i)=L(i)+D(R(j),R(j+1));    %原距离加上第j个城市到第j+1个城市的距离
        end
        L(i)=L(i)+D(R(1),R(n));      %一轮下来后走过的距离
    end
    L_best(NC)=min(L);           %最佳距离取最小
    pos=find(L==L_best(NC));
    R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线
    L_ave(NC)=mean(L);           %此轮迭代后的平均距离
    NC=NC+1                      %迭代继续
 
 
    %%第五步:更新信息素
    Delta_Tau=zeros(n,n);        %开始时信息素为n*n的0矩阵
    for i=1:m
        for j=1:(n-1)
            Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
            %此次循环在路径(i,j)上的信息素增量
        end
        Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
        %此次循环在整个路径上的信息素增量
    end
    Tau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素
    %%第六步:禁忌表清零
    Tabu=zeros(m,n);             %%直到最大迭代次数
end
%%第七步:输出结果
Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)
Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径
Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离
 
figure(1) 
plot(L_best)
xlabel('迭代次数')
ylabel('目标函数值')
title('适应度进化曲线')
 
figure(2)
subplot(1,2,1)                  %绘制第一个子图形
   %画路线图
%%=========================================================================
%% DrawRoute.m
%% 画路线图
%%-------------------------------------------------------------------------
%% C Coordinate 节点坐标,由一个N×2的矩阵存储
%% R Route 路线
%%=========================================================================
N=length(R);
scatter(C(:,1),C(:,2));
 hold on
 plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],'g')
 hold on
for ii=2:N
    plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],'g')
     hold on
end
title('旅行商问题优化结果 ')
 
subplot(1,2,2)                  %绘制第二个子图形
plot(L_best)
hold on                         %保持图形
plot(L_ave,'r')
title('平均距离和最短距离')     %标题

2、运行结果

Shortest_Route = 14    12    13    11    23    16     5     6     7     2     4     8     9    10     3    18    17    19    24    25    20    21    22    26    28    27    30     31    29     1    15

Shortest_Length =1.5602e+04

相关阅读

如何执行个性化推荐:个性化推荐的需求、算法和数据

毫无疑问,投其所好,往往能够帮助产品捕获更多的用户并且更为牢固的锁住用户,但关键在于如何执行个性化推荐,从而更好的满足用户需求。

实现洗牌算法

洗牌算法 Fisher–Yates随机置乱算法也被称做高纳德置乱算法,通俗说就是生成一个有限集合的随机排列。 Fisher-Yates随机置乱算法

Dijkstra算法图文详解(转)

本文转载自:https://blog.csdn.net/lbperfect123/article/details/84281300Dijkstra算法 Dijkstra算法算是贪心思想实现的,首先把起

洗牌算法

洗牌算法洗牌算法是常见的随机问题:将1 ~ 52张扑克牌重新洗牌什么是好的洗牌算法:洗牌之后,如果能够保证每一个数出现在所有位置上的

贪心算法(一)

概念:贪心法,指的是从问题的初始状态出发,通过若干次的贪心选择而得出最优值(或较优解)的一种解题方法。其实,从“贪心策略”一词我们

分享到:

栏目导航

推荐阅读

热门阅读