多元线性回归
# Multiple Linear regression
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('50_Startups.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 4].values
# Encoding categorical data
# Encoding the Independent Variable
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:, 3] = labelencoder_X.fit_transform(X[:, 3])
onehotencoder = OneHotEncoder(categorical_features = [3])
X = onehotencoder.fit_transform(X).toarray()
# Avoiding the dummy Variable Trap
X = X[:, 1:]
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# Feature Scaling
"""from sklearn.preprocessing import Standardscaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
sc_y = StandardScaler()
y_train = sc_y.fit_transform(y_train)"""
# Fitting Multiple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# Predicting the Test set results
y_pred = regressor.predict(X_test)
# building the optimal model using Backward Elimination
import statsmodels.formula.api as sm
X_train = np.APPend(arr = np.ones((40, 1)).astype(int), values = X_train, axis = 1)
X_opt = X_train [:, [0, 1, 2, 3, 4, 5]]
regressor_OLS = sm.OLS(endog = y_train, exog = X_opt).fit()
regressor_OLS.summary()
X_opt = X_train [:, [0, 1, 3, 4, 5]]
regressor_OLS = sm.OLS(endog = y_train, exog = X_opt).fit()
regressor_OLS.summary()
X_opt = X_train [:, [0, 3, 4, 5]]
regressor_OLS = sm.OLS(endog = y_train, exog = X_opt).fit()
regressor_OLS.summary()
X_opt = X_train [:, [0, 3, 5]]
regressor_OLS = sm.OLS(endog = y_train, exog = X_opt).fit()
regressor_OLS.summary()
X_opt = X_train [:, [0, 3]]
regressor_OLS = sm.OLS(endog = y_train, exog = X_opt).fit()
regressor_OLS.summary()
相关阅读
文/东方亦落昨天下午,滴滴顺风车业务负责人张瑞通过官微发表了《滴滴顺风车致大家的一封信》。内容包括在顺风车下线这段时间所做
多项式回归(polynomial regression)转换为线性回归(linea
一、介绍一元m次多项式回归方程:二元二次多项式回归方程:多元多次的多项式回归方程较复杂,加之实际生产生活中一元m次多项式归回就已
一、回归算法 1.回归分析的概念 回归分析(regression analysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析
回归分析方法想要资源的请关注公众号: 在一起的足球自动获取资源和数十种经典算法,帮助各位提升自己之前留的是自己的qq号 感觉好多
“回归分析”是解析“注目变量”和“因于变量”并明确两者关系的统计方法。以下是seo实验室小编