牛顿定律
牛顿黏度定律
Newton’s Law of Viscosity
先定义矢量 ττ" role="presentation" style="position: relative;">ττ
ττ=−μ(∇vv+(∇vv)†)+(23μ−κ)(∇⋅vv)δ" role="presentation">ττ=−μ(∇vv+(∇vv)†)+(23μ−κ)(∇⋅vv)δ
τyx" role="presentation" style="position: relative;">τyx物理的意义:在垂直于y方向的单位面积的面上所受到x方向上的力,可以表达为
τyx=−μdvxdy" role="presentation">τyx=−μdvxdy
其中
τ" role="presentation" style="position: relative;">τ是流体所受的剪应力[Pa]" role="presentation" style="position: relative;">[Pa]
μ" role="presentation" style="position: relative;">μ是流体的黏度 [Pa·s]" role="presentation" style="position: relative;">[Pa⋅s]
dvxdy" role="presentation" style="position: relative;">dvxdy是x" role="presentation" style="position: relative;">x方向上速度的分量在y" role="presentation" style="position: relative;">y方向上的梯度[s−1]" role="presentation" style="position: relative;">[s−1]
1.直角坐标系(x,y,z" role="presentation" style="position: relative;">x,y,z)
直角坐标系Cartesian coordinates ( x,y,z " role="presentation" style="position: relative;">x,y,z): |
NO. |
τxx=−μ[2∂vx∂x]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τxx=−μ[2∂vx∂x]+(23μ−κ)(∇⋅vv) |
1-1 |
τyy=−μ[2∂vy∂y]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τyy=−μ[2∂vy∂y]+(23μ−κ)(∇⋅vv) |
1-2 |
τzz=−μ[2∂vz∂z]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τzz=−μ[2∂vz∂z]+(23μ−κ)(∇⋅vv) |
1-3 |
τxy=τyx=−μ[∂vy∂x+∂vx∂y]" role="presentation" style="position: relative;">τxy=τyx=−μ[∂vy∂x+∂vx∂y] |
1-4 |
τyz=τzy=−μ[∂vz∂y+∂vy∂z]" role="presentation" style="position: relative;">τyz=τzy=−μ[∂vz∂y+∂vy∂z] |
1-5 |
τzx=τxz=−μ[∂vx∂z+∂vz∂x]" role="presentation" style="position: relative;">τzx=τxz=−μ[∂vx∂z+∂vz∂x] |
1-6 |
其中
∇⋅vv=∂vx∂x+∂vy∂y+∂vz∂z" role="presentation">∇⋅vv=∂vx∂x+∂vy∂y+∂vz∂z
2.圆柱坐标系(r,θ,z" role="presentation" style="position: relative;">r,θ,z)
圆柱坐标系Cylindrical coordinates coordinates (r, θ, z " role="presentation" style="position: relative;">r,θ, z): |
NO. |
τrr=−μ[2∂vr∂r]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τrr=−μ[2∂vr∂r]+(23μ−κ)(∇⋅vv) |
2-1 |
τθθ=−μ[2(1r∂vθ∂θ+vrr)]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τθθ=−μ[2(1r∂vθ∂θ+vrr)]+(23μ−κ)(∇⋅vv) |
2-2 |
τzz=−μ[2∂vz∂z]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τzz=−μ[2∂vz∂z]+(23μ−κ)(∇⋅vv) |
2-3 |
τrθ=τθr=−μ[r∂∂r(vθr)+1r∂vr∂θ]" role="presentation" style="position: relative;">τrθ=τθr=−μ[r∂∂r(vθr)+1r∂vr∂θ] |
2-4 |
τθz=τzθ=−μ[1r∂vz∂θ+∂vθ∂z]" role="presentation" style="position: relative;">τθz=τzθ=−μ[1r∂vz∂θ+∂vθ∂z] |
2-5 |
τzr=τrz=−μ[∂vr∂z+∂vz∂r]" role="presentation" style="position: relative;">τzr=τrz=−μ[∂vr∂z+∂vz∂r] |
2-6 |
其中
∇⋅vv=1r∂∂r(rvr)+1r∂vθ∂θ+∂vz∂z" role="presentation">∇⋅vv=1r∂∂r(rvr)+1r∂vθ∂θ+∂vz∂z
3.球坐标系(r,θ,ϕ" role="presentation" style="position: relative;">r,θ,ϕ)
球坐标系Spherical coordinates(r, θ, ϕ " role="presentation" style="position: relative;">r,θ,ϕ): |
NO. |
τrr=−μ[2∂vr∂r]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τrr=−μ[2∂vr∂r]+(23μ−κ)(∇⋅vv) |
3-1 |
τθθ=−μ[2(1r∂vθ∂θ+vrr)]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τθθ=−μ[2(1r∂vθ∂θ+vrr)]+(23μ−κ)(∇⋅vv) |
3-2 |
τzz=−μ[2(1rsinθ∂vϕ∂ϕ+vr+vθcotθr)]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τzz=−μ[2(1rsinθ∂vϕ∂ϕ+vr+vθcotθr)]+(23μ−κ)(∇⋅vv) |
3-3 |
τrθ=τθr=−μ[r∂∂r(vθr)+1r∂vr∂θ]" role="presentation" style="position: relative;">τrθ=τθr=−μ[r∂∂r(vθr)+1r∂vr∂θ] |
3-4 |
τθϕ=τϕθ=−μ[sinθr∂∂θ(vϕsinθ)+1rsinθ∂vθ∂ϕ]" role="presentation" style="position: relative;">τθϕ=τϕθ=−μ[sinθr∂∂θ(vϕsinθ)+1rsinθ∂vθ∂ϕ] |
3-5 |
τϕr=τrϕ=−μ[1rsinθ∂vr∂ϕ+r∂∂r(vϕr)]" role="presentation" style="position: relative;">τϕr=τrϕ=−μ[1rsinθ∂vr∂ϕ+r∂∂r(vϕr)] |
3-6 |
其中
∇⋅vv=1r2∂∂r(r2vr)+1rsinθ∂∂θ(vθsinθ)+1rsinθ∂vθ∂ϕ" role="presentation">∇⋅vv=1r2∂∂r(r2vr)+1rsinθ∂∂θ(vθsinθ)+1rsinθ∂vθ∂ϕ
参考文献
- R. Byron Bird, Warren E. stewart, Edwin N. Lightfoot.* Transport phenomena:Revised second edition* John Wiely &Sons, Inc.
相关阅读
奥卡姆剃刀定律
奥卡姆剃刀定律:如无必要,勿增实体奥卡姆剃刀定律是由英国奥卡姆的威廉所提出来的。在他主张的唯名论中,奥卡姆的威廉说到:“切勿浪费
真香定律?苹果降价销量猛增
口口声声让苹果在国内难堪,苹果降价之后,逃不过真香定律!上个月苹果宣布在中国市场iPhone降价的策略,iPhone 销量大幅暴增。有数据统
逻辑代数基本公式及定律
逻辑代数基本公式及定律
一、基本公式
变量和常量的逻辑加
变量和常量的逻辑乘
变量和反变量的逻辑加和逻辑乘
复合逻辑运算
浅谈软件开发定律系列之帕金森定律…
原创作品,允许转载,转载时请务必以超链接形式标明文章
原始出处
、作者信息和本声明。否则将追究法律责任。http://eilfei2000.b
IT界的三大定律
在IT界,有着统治许久的三大定律:摩尔定律,安迪-比尔定律,反摩尔定律,他们在不同程度上被业界人士所遵从,一方面他们是业界的动力,促进整