必威体育Betway必威体育官网
当前位置:首页 > IT技术

牛顿黏度定律【Newton's Law of Viscosity】

时间:2019-10-10 21:13:24来源:IT技术作者:seo实验室小编阅读:73次「手机版」
 

牛顿定律

牛顿黏度定律

Newton’s Law of Viscosity

先定义矢量 ττ" role="presentation" style="position: relative;">ττ

ττ=−μ(∇vv+(∇vv)†)+(23μ−κ)(∇⋅vv)δ" role="presentation">ττ=μ(vv+(vv))+(23μκ)(vv)δ

τyx" role="presentation" style="position: relative;">τyx物理的意义:在垂直于y方向的单位面积的面上所受到x方向上的力,可以表达为

τyx=−μdvxdy" role="presentation">τyx=μdvxdy

其中

τ" role="presentation" style="position: relative;">τ是流体所受的剪应力[Pa]" role="presentation" style="position: relative;">[Pa]

μ" role="presentation" style="position: relative;">μ是流体的黏度 [Pa·s]" role="presentation" style="position: relative;">[Pa·s]

dvxdy" role="presentation" style="position: relative;">dvxdyx" role="presentation" style="position: relative;">x方向上速度的分量在y" role="presentation" style="position: relative;">y方向上的梯度[s−1]" role="presentation" style="position: relative;">[s1]


1.直角坐标系(x,y,z" role="presentation" style="position: relative;">x,y,z)

直角坐标系Cartesian coordinates ( x,y,z " role="presentation" style="position: relative;">x,y,z): NO.
τxx=−μ[2∂vx∂x]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τxx=μ[2vxx]+(23μκ)(vv) 1-1
τyy=−μ[2∂vy∂y]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τyy=μ[2vyy]+(23μκ)(vv) 1-2
τzz=−μ[2∂vz∂z]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τzz=μ[2vzz]+(23μκ)(vv) 1-3
τxy=τyx=−μ[∂vy∂x+∂vx∂y]" role="presentation" style="position: relative;">τxy=τyx=μ[vyx+vxy] 1-4
τyz=τzy=−μ[∂vz∂y+∂vy∂z]" role="presentation" style="position: relative;">τyz=τzy=μ[vzy+vyz] 1-5
τzx=τxz=−μ[∂vx∂z+∂vz∂x]" role="presentation" style="position: relative;">τzx=τxz=μ[vxz+vzx] 1-6

其中

∇⋅vv=∂vx∂x+∂vy∂y+∂vz∂z" role="presentation">vv=vxx+vyy+vzz


2.圆柱坐标系(r,θ,z" role="presentation" style="position: relative;">r,θ,z)

圆柱坐标系Cylindrical coordinates coordinates (r, θ, z " role="presentation" style="position: relative;">r,θ, z): NO.
τrr=−μ[2∂vr∂r]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τrr=μ[2vrr]+(23μκ)(vv) 2-1
τθθ=−μ[2(1r∂vθ∂θ+vrr)]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τθθ=μ[2(1rvθθ+vrr)]+(23μκ)(vv) 2-2
τzz=−μ[2∂vz∂z]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τzz=μ[2vzz]+(23μκ)(vv) 2-3
τrθ=τθr=−μ[r∂∂r(vθr)+1r∂vr∂θ]" role="presentation" style="position: relative;">τrθ=τθr=μ[rr(vθr)+1rvrθ] 2-4
τθz=τzθ=−μ[1r∂vz∂θ+∂vθ∂z]" role="presentation" style="position: relative;">τθz=τzθ=μ[1rvzθ+vθz] 2-5
τzr=τrz=−μ[∂vr∂z+∂vz∂r]" role="presentation" style="position: relative;">τzr=τrz=μ[vrz+vzr] 2-6

其中

∇⋅vv=1r∂∂r(rvr)+1r∂vθ∂θ+∂vz∂z" role="presentation">vv=1rr(rvr)+1rvθθ+vzz


3.球坐标系(r,θ,ϕ" role="presentation" style="position: relative;">r,θ,ϕ)

球坐标系Spherical coordinates(r, θ, ϕ " role="presentation" style="position: relative;">r,θ,ϕ): NO.
τrr=−μ[2∂vr∂r]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τrr=μ[2vrr]+(23μκ)(vv) 3-1
τθθ=−μ[2(1r∂vθ∂θ+vrr)]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τθθ=μ[2(1rvθθ+vrr)]+(23μκ)(vv) 3-2
τzz=−μ[2(1rsinθ∂vϕ∂ϕ+vr+vθcotθr)]+(23μ−κ)(∇⋅vv)" role="presentation" style="position: relative;">τzz=μ[2(1rsinθvϕϕ+vr+vθcotθr)]+(23μκ)(vv) 3-3
τrθ=τθr=−μ[r∂∂r(vθr)+1r∂vr∂θ]" role="presentation" style="position: relative;">τrθ=τθr=μ[rr(vθr)+1rvrθ] 3-4
τθϕ=τϕθ=−μ[sinθr∂∂θ(vϕsinθ)+1rsinθ∂vθ∂ϕ]" role="presentation" style="position: relative;">τθϕ=τϕθ=μ[sinθrθ(vϕsinθ)+1rsinθvθϕ] 3-5
τϕr=τrϕ=−μ[1rsinθ∂vr∂ϕ+r∂∂r(vϕr)]" role="presentation" style="position: relative;">τϕr=τrϕ=μ[1rsinθvrϕ+rr(vϕr)] 3-6

其中

∇⋅vv=1r2∂∂r(r2vr)+1rsinθ∂∂θ(vθsinθ)+1rsinθ∂vθ∂ϕ" role="presentation">vv=1r2r(r2vr)+1rsinθθ(vθsinθ)+1rsinθvθϕ


参考文献

  1. R. Byron Bird, Warren E. stewart, Edwin N. Lightfoot.* Transport phenomena:Revised second edition* John Wiely &Sons, Inc.

相关阅读

奥卡姆剃刀定律

奥卡姆剃刀定律:如无必要,勿增实体奥卡姆剃刀定律是由英国奥卡姆的威廉所提出来的。在他主张的唯名论中,奥卡姆的威廉说到:“切勿浪费

真香定律?苹果降价销量猛增

口口声声让苹果在国内难堪,苹果降价之后,逃不过真香定律!上个月苹果宣布在中国市场iPhone降价的策略,iPhone 销量大幅暴增。有数据统

逻辑代数基本公式及定律

逻辑代数基本公式及定律 一、基本公式 变量和常量的逻辑加 变量和常量的逻辑乘 变量和反变量的逻辑加和逻辑乘 复合逻辑运算

浅谈软件开发定律系列之帕金森定律…

原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 、作者信息和本声明。否则将追究法律责任。http://eilfei2000.b

IT界的三大定律

在IT界,有着统治许久的三大定律:摩尔定律,安迪-比尔定律,反摩尔定律,他们在不同程度上被业界人士所遵从,一方面他们是业界的动力,促进整

分享到:

栏目导航

推荐阅读

热门阅读