必威体育Betway必威体育官网
当前位置:首页 > IT技术

动态规划---最大子段和,最大子矩阵和,最大m子段和

时间:2019-10-15 21:12:11来源:IT技术作者:seo实验室小编阅读:54次「手机版」
 

最大

 1、最大子段和问题

问题定义:对于给定序列a1,a2,a3……an,寻找它的某个连续子段,使得其和最大。如( -2,11,-4,13,-5,-2 )最大子段是{ 11,-4,13 }其和为20。

(1)枚举法求解

枚举法思路如下:

以a[0]开始: {a[0]}, {a[0],a[1]},{a[0],a[1],a[2]}……{a[0],a[1],……a[n]}共n个

以a[1]开始: {a[1]}, {a[1],a[2]},{a[1],a[2],a[3]}……{a[1],a[2],……a[n]}共n-1个

……

以a[n]开始:{a[n]}共1个

一共(n+1)*n/2个连续子段,使用枚举,那么应该可以得到以下算法

具体代码如下:

#include <stdio.h>
#include <iOStream>
#include <fstream>
#include <string.h>
using namespace std;

int MaxSum(int n,int *a,int& besti,int& bestj);

int main()
{
    int a[] = {-2,11,-4,13,-5,-2};

    for(int i=0; i<6; i++)
        cout<<a[i]<<" ";

    int besti,bestj;

    cout<<endl;
    cout<<"数组a的最大连续子段和为:a["<<besti<<":"<<bestj<<"]:"<<MaxSum(6,a,besti,bestj)<<endl;

    return 0;
}

int MaxSum(int n,int *a,int& besti,int& bestj)
{
    int sum = 0;
    for(int i=0; i<n; i++)//控制求和起始项
    {
        for(int j=i; j<n; j++)//控制求和结束项
        {
            int thissum = 0;
            for(int k=i; k<=j; k++)//求和
                thissum += a[k];

            if(thissum>sum)//求最大子段和
            {
                sum = thissum;
                besti = i;
                bestj = j;
            }
        }
    }
    return sum;
}
 从这个算法的三个for循环可以看出,它所需要的计算时间是O(n^3)。事实上,如果注意到,则可将算法中的最后一个for循环省去,避免重复计算,从而使算法得以改进。改进后的代码如下:

#include <stdio.h>
#include <iostream>
#include <fstream>
#include <string.h>
using namespace std;
int MaxSum(int n,int *a,int& besti,int& bestj);  
  
int main()  
{  
    int a[] = {-2,11,-4,13,-5,-2};  
  
    for(int i=0; i<6; i++)   
        cout<<a[i]<<" ";  
  
    int besti,bestj;  
  
    cout<<endl;  
    cout<<"数组a的最大连续子段和为:a["<<besti<<":"<<bestj<<"]:"<<MaxSum(6,a,besti,bestj)<<endl;  
  
    return 0;  
}  
  
int MaxSum(int n,int *a,int& besti,int& bestj)  
{     
    int sum = 0;  
    for(int i=0; i<n; i++)//控制求和起始项  
    {  
        int thissum = 0;  
        for(int j=i; j<=n; j++)//控制求和结束项  
        {  
            thissum += a[j];//求和  
            if(thissum>sum)  
            {  
                sum = thissum;  
                besti = i;  
                bestj = j;  
            }  
              
        }  
    }  
    return sum;  
} 

(2)分治法求解

  分治法思路如下:

将序列a[1:n]分成长度相等的两段a[1:n/2]和a[n/2+1:n],分别求出这两段的最大字段和,则a[1:n]的最大子段和有三中情形:

[1]、a[1:n]的最大子段和与a[1:n/2]的最大子段和相同; 

[2]、a[1:n]的最大子段和与a[n/2+1:n]的最大子段和相同;

   [3]、a[1:n]的最大字段和为,且1<=i<=n/2,n/2+1<=j<=n。

   可用递归方法求得情形[1],[2]。对于情形[3],可以看出a[n/2]与a[n/2+1]在最优子序列中。因此可以在a[1:n/2]中计算出,并在a[n/2+1:n]中计算出。则s1+s2即为出现情形[3]时的最优值。

#include <stdio.h>
#include <iostream>
#include <fstream>
#include <string.h>
using namespace std;
int MaxSubSum(int *a,int left,int right);
int MaxSum(int n,int *a);

int main()
{
    int a[] = {-2,11,-4,13,-5,-2};

    for(int i=0; i<6; i++)
    {
        cout<<a[i]<<" ";
    }

    cout<<endl;
    cout<<"数组a的最大连续子段和为:"<<MaxSum(6,a)<<endl;

    return 0;
}

int MaxSubSum(int *a,int left,int right)
{
    int sum = 0;
    if(left == right)
    {
        sum = a[left]>0?a[left]:0;
    }
    else
    {
        int center = (left+right)/2;
        int leftsum = MaxSubSum(a,left,center);
        int rightsum = MaxSubSum(a,center+1,right);

        int s1 = 0;
        int lefts = 0;
        for(int i=center; i>=left;i--)
        {
            lefts += a[i];
            if(lefts>s1)
            {
                s1=lefts;
            }
        }

        int s2 = 0;
        int rights = 0;
        for(int i=center+1; i<=right;i++)
        {
            rights += a[i];
            if(rights>s2)
            {
                s2=rights;
            }
        }
        sum = s1+s2;
        if(sum<leftsum)
        {
            sum = leftsum;
        }
        if(sum<rightsum)
        {
            sum = rightsum;
        }

    }
    return sum;
}

int MaxSum(int n,int *a)
{
    return MaxSubSum(a,0,n-1);
}

 算法所需的计算时间T(n)满足一下递归式:

解此递归方程可知:T(n)=O(nlogn)。

(3)动态规划算法求解 

算法思路如下:

,则所求的最大子段和为:

   由b[j]的定义知,当b[j-1]>0时,b[j]=b[j-1]+a[j],否则b[j]=a[j]。由此可得b[j]的动态规划递推式如下:

b[j]=max{b[j-1]+a[j],a[j]},1<=j<=n。

#include <stdio.h>
#include <iostream>
#include <fstream>
#include <string.h>
using namespace std;
int MaxSum(int n,int *a);
int main()
{
    int a[]={-2,11,-4,13,-5,-2};
    for(int i=0; i<6; i++)
    {
        cout<<a[i]<<" ";
    }
    cout<<endl;
    cout<<"数组a的最大连续子段和为:"<<MaxSum(6,a)<<endl;
    return 0;
}
int MaxSum(int n,int *a)
{
    int sum=0,b=0;
    for(int i=0;i<n;i++)
    {
        if(b>0) b+=a[i];
        else b=a[i];
        if(b>sum)
            sum=b;
    }
    return sum;
}
上述算法的时间复杂度空间复杂度均为O(n)。

2、最大子矩阵和问题

 (1)问题描述:给定一个m行n列的整数矩阵A,试求A的一个子矩阵,时期各元素之和为最大。

(2)问题分析:

用二维数组a[1:m][1:n]表示给定的m行n列的整数矩阵。子数组a[i1:i2][j1:j2]表示左上角和右下角行列坐标分别为(i1,j1)和(i2,j2)的子矩阵,其各元素之和记为:

最大子矩阵问题的最优值为。如果用直接枚举的方法解最大子矩阵和问题,需要O(m^2n^2)时间。注意到,式中,,设,则

容易看出,这正是一维情形的最大子段和问题。因此,借助最大子段和问题的动态规划算法MaxSum,可设计出最大子矩阵和动态规划算法如下:

#include <stdio.h>
#include <iostream>
#include <fstream>
#include <string.h>
using namespace std;

const int M=4;
const int N=3;

int MaxSum(int n,int *a);
int MaxSum2(int m,int n,int a[M][N]);

int main()
{
    int a[][N] = {{4,2,9},{1,3,8},{-3,-1,6},{0,-9,-5}};

    for(int i=0; i<M; i++)
    {
        for(int j=0; j<N; j++)
        {
            cout<<a[i][j]<<" ";
        }
        cout<<endl;
    }

    cout<<endl;
    cout<<"数组a的最大连续子段和为:"<<MaxSum2(M,N,a)<<endl;

    return 0;
}

int MaxSum2(int m,int n,int a[M][N])
{
    int sum = 0;
    int *b = new int[n];
    for(int i=0; i<m; i++)//枚举行
    {
        for(int k=0; k<n;k++)
            b[k]=0;

        for(int j=i;j<m;j++)//枚举初始行i,结束行j
        {
            for(int k=0; k<n; k++)
            {
                b[k] += a[j][k];//b[k]为纵向列之和
                int max = MaxSum(n,b);
                if(max>sum)
                {
                    sum = max;
                }
            }
        }
    }
    return sum;
}

int MaxSum(int n,int *a)
{
    int sum1=0,b=0;
    for(int i=0; i<n; i++)
    {
        if(b>0)
        {
            b+=a[i];
        }
        else
        {
            b=a[i];
        }
        if(b>sum1)
        {
            sum1 = b;
        }
    }
    return sum1;
}
  以上代码MaxSum2方法的执行过程可用下图表示:

3、最大m子段和问题

(1)问题描述:给定由n个整数(可能为负数)组成的序列a1,a2,a3……an,以及一个正整数m,要求确定此序列的m个不相交子段的总和达到最大。最大子段和问题是最大m字段和问题当m=1时的特殊情形。

(2)问题分析:设b(i,j)表示数组a的前j项中i个子段和的最大值,且第i个子段含a[j](1<=i<=m,i<=j<=n),则所求的最优值显然为。与最大子段问题相似,计算b(i,j)的递归式为:

其中,表示第i个子段含a[j-1],而项表示第i个子段仅含a[j]。初始时,b(0,j)=0,(1<=j<=n);b(i,0)=0,(1<=i<=m)。

#include <stdio.h>
#include <iostream>
#include <fstream>
#include <string.h>
using namespace std;

int MaxSum(int m,int n,int *a);

int main()
{
    int a[] = {0,2,3,-7,6,4,-5};//数组脚标从1开始
    for(int i=1; i<=6; i++)
        cout<<a[i]<<" ";

    cout<<endl;
    cout<<"数组a的最大连续子段和为:"<<MaxSum(3,6,a)<<endl;
    }

int MaxSum(int m,int n,int *a)
{
    if(n<m || m<1)
        return 0;
    int **b = new int *[m+1];

    for(int i=0; i<=m; i++)  //b[m+1][n+1]
        b[i] = new int[n+1];

    for(int i=0; i<=m; i++)
        b[i][0] = 0;

    for(int j=1;j<=n; j++)
        b[0][j] = 0;


    //枚举子段数目,从1开始,迭代到m,递推出b[i][j]的值
    for(int i=1; i<=m; i++)
    {
        //n-m+i限制避免多余运算,当i=m时,j最大为n,可据此递推所有情形
        for(int j=i; j<=n-m+i; j++)
        {
            if(j>i)
            {
                b[i][j] = b[i][j-1] + a[j];//代表a[j]同a[j-1]一起,都在最后一子段中
                for(int k=i-1; k<j; k++)
                {
                    if(b[i][j]<b[i-1][k]+a[j])
                        b[i][j] = b[i-1][k]+a[j];//代表最后一子段仅包含a[j]
                }
            }
            else
                b[i][j] = b[i-1][j-1]+a[j];//当i=j时,每一项为一子段
        }
    }
    int sum = 0;
    for(int j=m; j<=n; j++)
    {
        if(sum<b[m][j])
            sum = b[m][j];
    }
    return sum;
}

下面看图,红色数字为输入的序列:

要求b[ 3 ][ 6 ],只需比较他左边的那个,和上面那一行圈起来的之中最大的数,再加上a[ j ] 即为b[ 3 ][ 6 ] 的值。

优化一下:

1、沿着第m行的最后一个元素,往左上方向画一条线,线右上方的元素是没必要计算的

那么b[ i ][ j ] ,j++的时候,j的上限为 i + n - m 即可。

还有左下角那一半矩阵,也是不用计算的,因为1个数字不可能分为2个子段

2、每确定一个b[ i ][ j ],只需用到本行和上一行,所以不用开维数组也可以,省内存

开两个一维数组,pre和dp,pre记录上一行,dp记录当前行

3、再对上一行红圈中的数字找最大值时,若用一个循环来找,容易超时。

优化方法:在每次计算dp之前,同时记录下j前面的最大元素

上述算法时间复杂度为O(m(n-m)),空间复杂度为O(n)。当m或n-m为常数时,时间复杂度和空间复杂度均为O(n)。

#include <stdio.h>
#include <iostream>
#include <fstream>
#include <string.h>
using namespace std;

int max(int a,int b){
    return a>b?a:b;
}
int MaxSum(int m,int n,int *a);
int main()
{

    int a[] = {0,2,3,-7,6,4,-5};//数组脚标从1开始
    int maxx=MaxSum(3,6,a);
    printf("%d\n",maxx);
    return 0;
}
int MaxSum(int m,int n,int *a)
{
    if(n<m || m<1) return 0;
    int *dp = new int[n+1]();//一维数组dp[0,1...n]
    int *pre = new int[n+1]();
    for(int i=1;i<=m;i++)//分为i段
        {
            dp[i]=pre[i-1]+a[i];//先假设为左上角那个元素为最优值
            int maxpre=pre[i-1]; //maxpre记录上一行的最大值
            for(int j=i;j<=n-m+i;j++)
            {
                dp[j]=max(dp[j-1],maxpre)+a[j];//对情况1、2的选择
                if(maxpre<pre[j])
                    maxpre=pre[j];
                pre[j]=dp[j];//别忘了这一步,顺便把这一行给pre
            }
        }
        int maxx=0;
        for(int i=m;i<=n;i++)//找到第m行的最大值,即为答案
            if(maxx<dp[i])
                maxx=dp[i];
    return maxx;
}

相关阅读

量子计算教程

看不懂 http://blog.sciencenet.cn/blog-3005681-1108697.html (量子计算入门•极简教程) https://baijiahao.baidu.com/s?id=159

翻牌子问题

有n块牌子,正面白色,反面黑色,编号为1至n。第1个人把所有的牌子翻成正面,第2个人把所有编号为2的倍数的牌子翻成反面,第3个人把所有编

子程序

Oracle为了方便管理这些代码块,往往会将其封装到一个特定的结构体之中,这样的结构体在Oracle之中就被称为子程序在Oracle中子程序分

动态背景

=============================动态背景===================== 最近在做一些新的项目联系;现在处于那种会的迷迷糊糊,不会的有待提

短信和二维码验证都OUT了?亿美软通创始人推新的电子凭

微护照是一套新的电子凭证系统。什么是电子凭证呢?之前我们使用过的可能有短信和二维码,比如在团购网站上下个单,会收到一条包含验证

分享到:

栏目导航

推荐阅读

热门阅读