必威体育Betway必威体育官网
当前位置:首页 > IT技术

EK算法详解

时间:2019-09-12 19:10:00来源:IT技术作者:seo实验室小编阅读:53次「手机版」
 

ek

这篇文章有一部分是转载别人的,因为他实在写的是太好了,然后大家可以放心的看我的,因为不仅把他的转了过来,还加上了自己的理解

原文:http://blog.sina.com.cn/s/blog_6cf509db0100uy5n.html

另附加一篇带详细图解的博客(但是没有代码,而且是用dfs写的,但是那几个图非常有助于理解)

https://blog.csdn.net/qq_39627843/article/details/79652140

/*******************************                                                                          *********************************/

因为是初学教程,所以我会尽量避免繁杂的数学公式和证明。也尽量给出了较为完整的代码。

本文的目标群体网络流的初学者,尤其是看了各种NB的教程也没看懂怎么求最大流的小盆友们。本文的目的是,解释基本的网络流模型,最基础的最大流求法,即bfs找增广路法,也就是EK法,全名是Edmond-Karp,其实我倒是觉得记一下算法的全名和来历可以不时的拿出来装一装。

比如说这个,EK算法首先由俄罗斯科学家Dinic在1970年提出,没错,就是dinic算法的创始人,实际上他提出的也正是dinic算法,在EK的基础上加入了层次优化,这个我们以后再说,1972年Jack Edmonds和Richard Karp发表了没有层次优化的EK算法。但实际上他们是比1790年更早的时候就独立弄出来了。

你看,研究一下历史也是很有趣的。

扯远了,首先来看一下基本的网络流最大流模型。

有n个点,有m条有向边,有一个点很特殊,只出不进,叫做源点,通常规定为1号点。另一个点也很特殊,只进不出,叫做汇点,通常规定为n号点。每条有向边上有两个量,容量和流量,从i到j的容量通常用c[I,j]表示,流量则通常是f[I,j]。通常可以把这些边想象成道路,流量就是这条道路的车流量,容量就是道路可承受的最大的车流量。很显然的,流量<=容量。而对于每个不是源点和汇点的点来说,可以类比的想象成没有存储功能的货物的中转站,所有”进入”他们的流量和等于所有从他本身”出去”的流量。

把源点比作工厂的话,问题就是求从工厂最大可以发出多少货物,是不至于超过道路的容量限制,也就是,最大流。

比如这个图。每条边旁边的数字表示它的容量。

最大流模板【EdmondsKarp算法,简称EK算法,O(m^2n)】

下面我们来考虑如何求最大流。

首先,假如所有边上的流量都没有超过容量(不大于容量),那么就把这一组流量,或者说,这个流,称为一个可行流。一个最简单的例子就是,零流,即所有的流量都是0的流。

我们就从这个零流开始考虑,假如有这么一条路,这条路从源点开始一直一段一段的连到了汇点,并且,这条路上的每一段都满足流量<容量,注意,是严格的<,而不是<=。那么,我们一定能找到这条路上的每一段的(容量-流量)的值当中的最小值delta(这个delta也就是差值的意思)。我们把这条路上每一段的流量都加上这个delta,一定可以保证这个流依然是可行流,这是显然的(因为该路径上的每一条路都没有达到饱和,可以增加)。

这样我们就得到了一个更大的流,他的流量是之前的流量+delta,而这条路就叫做增广路。

我们不断地从起点开始寻找增广路,每次都对其进行增广,直到源点和汇点不连通,也就是找不到增广路为止。当找不到增广路的时候,当前的流量就是最大流,这个结论非常重要。

寻找增广路的时候我们可以简单的从源点开始做bfs,并不断修改这条路上的delta量,直到找到源点或者找不到增广路。

这里要先补充一点,在程序实现的时候,我们通常只是用一个c数组来记录容量,而不记录流量,当流量+1的时候,我们可以通过容量-1来实现,以方便程序的实现。(这一点非常重要,如果不理解请再读一遍,然后把下面的那个例子看懂)

Bfs过程的半伪代码:下面另给一个C++版的模板

int BFS( int start )

{

int i,j,k,v,u;

memset(pre,-1,sizeof(pre));

for(i=1;i<=n;++i)flow[i]=max_int;

queue<int>que;

pre[start]=0;

que.push(start);

while(!que.empty())

{

v=que.front();

que.pop();

for(i=1;i<=n;++i)

{

u=i;

if(u==start||pre[u]!=-1||map[v][u]==0)continue;

pre[u]=v;

flow[u]=MIN(flow[v],map[v][u]);

que.push(u);

}

}

if(flow[end]==max_int)return -1;

return flow[end];

}

但事实上并没有这么简单,上面所说的增广路还不完整,比如说下面这个网络流模型。

最大流模板【EdmondsKarp算法,简称EK算法,O(m^2n)】

我们第一次找到了1-2-3-4这条增广路,这条路上的delta值显然是1。于是我们修改后得到了下面这个流。(图中的数字是容量)

最大流模板【EdmondsKarp算法,简称EK算法,O(m^2n)】

这时候(1,2)和(3,4)边上的流量都等于容量了,我们再也找不到其他的增广路了,当前的流量是1。

但这个答案明显不是最大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流。

那么我们刚刚的算法问题在哪里呢?问题就在于我们没有给程序一个”后悔”的机会,应该有一个不走(2-3-4)而改走(2-4)的机制。那么如何解决这个问题呢?回溯搜索吗?那么我们的效率就上升到指数级了。

而这个算法神奇的利用了一个叫做反向边的概念来解决这个问题。即每条边(I,j)都有一条反向边(j,i),反向边也同样有它的容量。

我们直接来看它是如何解决的:

在第一次找到增广路之后,在把路上每一段的容量减少delta的同时,也把每一段上的反方向的容量增加delta。即在Dec(c[x,y],delta)的同时,inc(c[y,x],delta)

我们来看刚才的例子,在找到1-2-3-4这条增广路之后,把容量修改成如下

最大流模板【EdmondsKarp算法,简称EK算法,O(m^2n)】

这时再找增广路的时候,就会找到1-3-2-4这条可增广量,即delta值为1的可增广路。将这条路增广之后,得到了最大流2。

最大流模板【EdmondsKarp算法,简称EK算法,O(m^2n)】

那么,这么做为什么会是对的呢?我来通俗的解释一下吧。

事实上,当我们第二次的增广路走3-2这条反向边的时候,就相当于把2-3这条正向边已经是用了的流量给”退”了回去,不走2-3这条路,而改走从2点出发的其他的路也就是2-4。(有人问如果这里没有2-4怎么办,这时假如没有2-4这条路的话,最终这条增广路也不会存在,因为他根本不能走到汇点)同时本来在3-4上的流量由1-3-4这条路来”接管”。而最终2-3这条路正向流量1,反向流量1,等于没有流量。

这就是这个算法的精华部分,利用反向边,使程序有了一个后悔和改正的机会。而这个算法和我刚才给出的代码相比只多了一句话而已。

#include<iOStream>

#include<queue>

using namespace std;

const int maxn=205;

const int inf=0x7fffffff;

int r[maxn][maxn]; //残留网络,初始化为原图

bool visit[maxn];

int pre[maxn];

int m,n;

bool bfs(int s,int t)  //寻找一条从s到t的增广路,若找到返回true

{

int p;

queue<int > q;

memset(pre,-1,sizeof(pre));

memset(visit,false,sizeof(visit));

pre[s]=s;

visit[s]=true;

q.push(s);

while(!q.empty())

{

p=q.front();

q.pop();

for(int i=1;i<=n;i++)

{

if(r[p][i]>0&&!visit[i])

{

   pre[i]=p;

   visit[i]=true;

   if(i==t) return true;

   q.push(i);

}

}

}

return false;

}

int EdmondsKarp(int s,int t)

{

  int flow=0,d,i;

  while(bfs(s,t))

  {

  d=inf;

  for(i=t;i!=s;i=pre[i])

  d=d<r[pre[i]][i]? d:r[pre[i]][i];

  for(i=t;i!=s;i=pre[i])

  {

  r[pre[i]][i]-=d;

  r[i][pre[i]]+=d;

  }

  flow+=d;

  }

  return flow;

}

int main()

{

while(scanf("%d%d",&m,&n)!=EOF)

{

int u,v,w;

memset(r,0,sizeof(r));///

for(int i=0;i<m;i++)

{

scanf("%d%d%d",&u,&v,&w);

r[u][v]+=w;

}

printf("%d\n",EdmondsKarp(1,n));

}

return 0;

}

这里就讲完了,EK算法的时间复杂度是O(m^2n),可见并不是特别理想,但是对于初学者来说又是必须掌握的算法,学完EK算法之后还有一个SAP算法,建议大家看一看。

相关阅读

搜索引擎广告的检索和匹配算法

1.搜索引擎广告的检索 广告检索的过程: 广告检索就是通过对给定的网民的信息需求,在广告库(Ad Set)中找到相关的广告,简单的

24点算法讲解与实现

题目描述:在52张扑克牌中(去掉大小王),随机抽取4张牌,找到所有可能的情况和解。前言 博主曾在网上看到有很多关于24点的算法,但很多都是

背包问题 (动态规划算法)

声明:原文出处:https://blog.csdn.net/xp731574722/article/details/70766804 0-1 背包问题:给定 n 种物品和一个容量为 C 的背包,

微信指数是什么意思? 微信指数的算法是什么?

众所周知,微信做为一个超级流量入口,其一举一动无不倍受关注,从小程序的诞生,再到这次微信指数的上线,蝉大师觉得,针对移动互联网的优化

人工智能的算法黑箱与数据正义

前段时间,《终极

分享到:

栏目导航

推荐阅读

热门阅读