必威体育Betway必威体育官网
当前位置:首页 > IT技术

CKF算法实现

时间:2019-09-17 21:09:59来源:IT技术作者:seo实验室小编阅读:83次「手机版」
 

ckf

CKF算法实现

1.容积规则实现复杂积分

The points and weights of the cuBATure rule are independent with the integrand f(x)" role="presentation" style="position: relative;">f(x).

所以,容积规则的点和权重可以脱机计算并预先存储以加快计算速度。

1.1 确定容积点和权重

Consider a multi-dimension weighted integral of the form

I(f)=∫Df(x)ω(x)dx" role="presentation">I(f)=Df(x)ω(x)dx

The basic task of numerically computing I(f)" role="presentation" style="position: relative;">I(f) is to find a set of points xi" role="presentation" style="position: relative;">xi and weights ωi" role="presentation" style="position: relative;">ωi that APProximates I(f)" role="presentation" style="position: relative;">I(f) by a weighted sum of function evalutions .

I(f)≈∑i=1mωif(xi)" role="presentation">I(f)i=1mωif(xi)

变量x" role="presentation" style="position: relative;">x是服从高斯分布的,f" role="presentation" style="position: relative;">f是任意非线性函数

An efficient non-product third-degree fully symmetric cubature rule is proposed to find {xi,ωi}" role="presentation" style="position: relative;">{xi,ωi} for Gaussian weighted integrals.

∫Rnf(x)N(x;μ,Σ)dx=1πn∫Rnf(2Σx+μ)e−xTxdx" role="presentation">Rnf(x)N(x;μ,Σ)dx=1πnRnf(2Σx+μ)exTxdx

Combine the spherical rule and the radial rule

∫Rnf(x)e−xTxdx≈∑j=1ms∑i=1mraibjf(risj)" role="presentation">Rnf(x)exTxdxj=1msi=1mraibjf(risj)

对于一个标准高斯加权积分有:

(当n一定,ai=Γ(n/2)2,bj=2πn2nΓ(n/2),ri=n/2,sj=1" role="presentation" style="position: relative;">ai=Γ(n/2)2,bj=2πn2nΓ(n/2),ri=n/2,sj=1都是常值;且mr=1" role="presentation" style="position: relative;">mr=1,一个点;m=ms=2n" role="presentation" style="position: relative;">m=ms=2n

IN(f)=∫Rnf(x)N(x;0,I)dx=1πn∫Rnf(2x)e−xTxdx≈1πn∑j=1mΓ(n/2)2bjf(2n/2sj)=∑i=1m12nf(n[1]i)" role="presentation">IN(f)=Rnf(x)N(x;0,I)dx=1πnRnf(2x)exTxdx1πnj=1mΓ(n/2)2bjf(2n/2sj)=i=1m12nf(n[1]i)

For Gaussian distribution with non-zero mean and non-unity covariance, the cubature points will be located at (Σ[1]i+μ)" role="presentation" style="position: relative;">(Σ[1]i+μ).[2]

1.2 编程实现

[1] Arasaratnam I, Haykin S. Cubature Kalman Filters[J]. IEEE transactions on Automatic Control, 2009, 54(6):1254-1269.

[2] Bhaumik, Shovan, Cubature quadrature Kalman filter, 2013

相关阅读

关于ckfinder+ckeditor 图片上传路径问题

本人java 小白。 在做公司的小项目用的是jeesite,里面的图片和富文本用的是 ckfinder+ckeditor。过程中遇到了路径的问题。百度了

OpenCV:计时函数getTickCount、getTickFrequency

1. getTickCount() & getTickFrequency() getTickCount():返回CPU自某个时间以来走过的时钟周期数。getTickFrequency():返回CPU

需要在Transactional注解指定rollbackFor或者在方法中

需要在Transactional注解指定rollbackFor或者在方法中显示的rollback 芥末无疆sss 关注2018.02.14 01:53 字数 842 阅读 39评

winsockfix无法修复winsock怎么办?

WinsockFix是一款超级好用的winsock和TCP/IP修复工具,平时在使用计算机时,难免会碰到不良的软件,其附带的病毒有可能会篡改电脑的注

分享到:

栏目导航

推荐阅读

热门阅读