NMS
- 先看张图:
NMS算法思路来源于:https://chenzomi12.github.io/2016/12/14/YOLO-nms/
- 算法流程:
- 把置信度最高的一个boundingbox(bbox)作为目标,然后对比剩下bbox与目标bbox之间的交叉区域
- 如果交叉区域大于设定的阈值,那么在剩下的bbox中去除该bbox(即使该bbox的置信度与目标bbox的置信度一样)—-这个操作就是抑制最大重叠区域
- 把第二置信度高的bbox作为目标,重复1、2
- v1版本:
import numpy as np
def nms(dets, thresh):
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
score = dets[:, 4]
sort_id_list = score.argsort()[::-1].tolist()
res = []
while len(sort_id_list) >= 1:
i = sort_id_list.pop(0)
res.APPend([x1[i], y1[i], x2[i], y2[i], score[i]])
#intersect area left top point(xx1, yy1): xx1 >= x1, yy1 >= y1
#intersect area right down point(xx2, yy2): xx2 <= x2, yy2 <= y2
xx1 = np.maximum(x1[i], x1[sort_id_list[:]])
yy1 = np.maximum(y1[i], y1[sort_id_list[:]])
xx2 = np.Minimum(x2[i], x2[sort_id_list[:]])
yy2 = np.minimum(y2[i], y2[sort_id_list[:]])
inter_w = np.maximum(0, (xx2 - xx1))
inter_h = np.maximum(0, (yy2 - yy1))
intersect = inter_w * inter_h
#iou = intersect area / union; union = box1 + box2 - intersect
iou = intersect / ((x2[i] - x1[i]) * (y2[i] - y1[i]) +\
(x2[sort_id_list[:]] - x1[sort_id_list[:]]) * (y2[sort_id_list[:]] - y1[sort_id_list[:]]) -\
intersect)
for i in reversed(range(len(sort_id_list))):
if iou[i] > thresh:
sort_id_list.pop(i)
return res
if __name__ == "__main__":
dets = np.array([
[204, 102, 358, 250, 0.5],
[257, 118, 380, 250, 0.7],
[280, 135, 400, 250, 0.6],
[255, 118, 360, 235, 0.7]
])
thresh = 0.3
res = nms(dets, thresh)
print(res)
- v2版本:
import numpy as np
def nms(dets, thresh):
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
score = dets[:, 4]
order = score.argsort()[::-1]
area = (x2 - x1) * (y2 - y1)
res = []
while order.size >= 1:
i = order[0]
res.append([x1[i], y1[i], x2[i], y2[i], score[i]])
#intersect area left top point(xx1, yy1): xx1 >= x1, yy1 >= y1
#intersect area right down point(xx2, yy2): xx2 <= x2, yy2 <= y2
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, (xx2 - xx1))
h = np.maximum(0.0, (yy2 - yy1))
intersect = w * h
#iou = intersect area / union; union = box1 + box2 - intersect
iou = intersect / (area[i] + area[order[1:]] - intersect)
#update order index;ind +1:because ind is obtain by index [1:]
ind = np.where(iou <= thresh)[0]
order = order[ind +1]
return res
if __name__ == "__main__":
dets = np.array([
[204, 102, 358, 250, 0.5],
[257, 118, 380, 250, 0.7],
[280, 135, 400, 250, 0.6],
[255, 118, 360, 235, 0.7]
])
thresh = 0.7
res = nms(dets, thresh)
print(res)
- v1 vs v2 启示:
1、能在函数外通过一次计算实现的,尽量不要放到函数内进行多次循环计算,如area。
2、使用Python高级库有助于快速实现。
3、np.array 数组本身可以作为另一个np.array数组的索引下标进行数组访问,如order[ind + 1](ind也为np.array数组)
相关阅读
瞬态抑制二极管即TVS管,tvs管是吸收浪涌功率用的,能在极短时间内承受反向电压冲击,使两极间的电压钳位于一个特定电压上,避免后面的电
NMS 非极大值抑制 import tensorflow as tf import numpy as np rects=np.asarray([[1,2,3,4],[1,3,3,4], [1,3,4,4],[1,1,4,4],
NMS: non maximum suppression 翻译为“非极大值抑制”,为什么不翻译成最大值抑制呢?maximum可以翻译为“最大值”,也可以翻译成“极