必威体育Betway必威体育官网
当前位置:首页 > IT技术

牛顿迭代法

时间:2019-09-10 08:42:10来源:IT技术作者:seo实验室小编阅读:82次「手机版」
 

牛顿迭代法

f(x)" role="presentation" style="position: relative;">f(x)R" role="presentation" style="position: relative;">R 有二阶连续导数,且 f′(x)≠0" role="presentation" style="position: relative;">f(x)0

∀x0,x∈R," role="presentation" style="position: relative;">x0,xR,f(x0)=0" role="presentation" style="position: relative;">f(x0)=0

f(x0)=f(x)+f′(x)Δx+12f″(ε)Δx2=0" role="presentation" style="position: relative;">f(x0)=f(x)+f(x)Δx+12f(ε)Δx2=0

⇒" role="presentation" style="position: relative;">

x0−x=Δx=−1f′(x)[f(x)+12f″(ε)Δx2]" role="presentation" style="position: relative;">x0x=Δx=1f(x)[f(x)+12f(ε)Δx2]

=−f(x)f′(x)−12f″(ε)f′(x)Δx2" role="presentation" style="position: relative;">=f(x)f(x)12f(ε)f(x)Δx2

⇒" role="presentation" style="position: relative;">

x0=x−f(x)f′(x)−12f″(ε)f′(x)Δx2" role="presentation" style="position: relative;">x0=xf(x)f(x)12f(ε)f(x)Δx2

由于 limx→x0[−12f″(ε)f′(x)Δx2]=0" role="presentation" style="position: relative;">limxx0[12f(ε)f(x)Δx2]=0

因此 limx→x0[x−f(x)f′(x)]=x0" role="presentation" style="position: relative;">limxx0[xf(x)f(x)]=x0

F(x)=x−f(x)f′(x)" role="presentation" style="position: relative;">F(x)=xf(x)f(x),则 limx→x0F(x)=x0" role="presentation" style="position: relative;">limxx0F(x)=x0

由此得到迭代公式:

xk+1=F(xk)=xk−f(xk)f′(xk)" role="presentation" style="position: relative;">xk+1=F(xk)=xkf(xk)f(xk)

相关阅读

牛顿迭代法

设r是 的根,选取 作为r的初始近似值,过点 做曲线 的切线L,L的方程为 ,求出L与x轴交点的横坐标 ,称x1为r的一次近似值。过点 做

分享到:

栏目导航

推荐阅读

热门阅读