牛顿迭代法
设 f(x)" role="presentation" style="position: relative;">f(x) 在 R" role="presentation" style="position: relative;">ℝ 有二阶连续导数,且 f′(x)≠0" role="presentation" style="position: relative;">f′(x)≠0 则
∀x0,x∈R," role="presentation" style="position: relative;">∀x0,x∈ℝ, 若 f(x0)=0" role="presentation" style="position: relative;">f(x0)=0 则
f(x0)=f(x)+f′(x)Δx+12f″(ε)Δx2=0" role="presentation" style="position: relative;">f(x0)=f(x)+f′(x)Δx+12f″(ε)Δx2=0
⇒" role="presentation" style="position: relative;">⇒
x0−x=Δx=−1f′(x)[f(x)+12f″(ε)Δx2]" role="presentation" style="position: relative;">x0−x=Δx=−1f′(x)[f(x)+12f″(ε)Δx2]
=−f(x)f′(x)−12f″(ε)f′(x)Δx2" role="presentation" style="position: relative;">=−f(x)f′(x)−12f″(ε)f′(x)Δx2
⇒" role="presentation" style="position: relative;">⇒
x0=x−f(x)f′(x)−12f″(ε)f′(x)Δx2" role="presentation" style="position: relative;">x0=x−f(x)f′(x)−12f″(ε)f′(x)Δx2
由于 limx→x0[−12f″(ε)f′(x)Δx2]=0" role="presentation" style="position: relative;">limx→x0[−12f″(ε)f′(x)Δx2]=0
因此 limx→x0[x−f(x)f′(x)]=x0" role="presentation" style="position: relative;">limx→x0[x−f(x)f′(x)]=x0
令 F(x)=x−f(x)f′(x)" role="presentation" style="position: relative;">F(x)=x−f(x)f′(x),则 limx→x0F(x)=x0" role="presentation" style="position: relative;">limx→x0F(x)=x0
由此得到迭代公式:
xk+1=F(xk)=xk−f(xk)f′(xk)" role="presentation" style="position: relative;">xk+1=F(xk)=xk−f(xk)f′(xk)
相关阅读
牛顿迭代法
设r是 的根,选取 作为r的初始近似值,过点 做曲线 的切线L,L的方程为 ,求出L与x轴交点的横坐标 ,称x1为r的一次近似值。过点 做