必威体育Betway必威体育官网
当前位置:首页 > IT技术

机器学习系列2:几种常见的boosting

时间:2019-08-13 12:42:07来源:IT技术作者:seo实验室小编阅读:55次「手机版」
 

boosting

几种常见的boosting

  • Boosting

很多时候单一模型不够稳定或者得出的结果不够好,需要进行模型集成(assemble),即用多种模型进行预测。集成方法分为bagging和 boosting两种。以下介绍boosting.

You can view Boosting as a linear regression combination of many models

FmX=a0f0(X)+a1f1(X)+…+amfm(X)

It is stage-wise optimized algorithm

Learn F0, then F1 F2

Emphases ERROR on each iteration

L(FmX,Y)< L(Fm-1X,Y)     L means loss function

ADA Boost

Emphases error by changing the distribution of samples.根据样本误差大小,分配权重。误差大的新权重大。

Gradient Boosting

Emphases error by changing train target.新的label是上一次预测的残差。

  • Gradient Boosting

Basic Function:

FX=m=0Mfm(X) 

f(X) is the base learner, and we use decision tree in GBDT

How to learn?

·Greedy way:

·FmX=Fm-1X+fm(X)

·Let L(y, FmX)<L(y, Fm-1X+fm)

·Gradient descent

·Get the negative gradient first

  ·ŷi=-ƏFm-1xil(Fm-1xi,yi)

·Learn from fmX to fit Ŷ by using L2 Loss

   ·fmX=arg minf(X)i=1n(fxi-ŷi)^2

  • GBDT

GBDT=Gradient Boost + Decision Tree

Supported Tasks: Regression, Classification, Ranking

四、LightGBM

LightGBM是微软2017年开源的一种基于决策树机器学习模型。LightGBM is a gradient boosting framework. It is designed to be distributed and efficient with following advantages:

~Fast training speed and high efficiency

~Lower memory usage

~Better accuracy

~parallel learning supported

~Capacity of handling large-scaling data

~Support categorical feature directly

相关阅读

adaboost、bagging、boosting的区别

Bagging和Boosting 概念及区别 Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器

分享到:

栏目导航

推荐阅读

热门阅读