必威体育Betway必威体育官网
当前位置:首页 > IT技术

机器学习基础(五十八)—— 香农熵、相对熵(KL散度)与交叉熵

时间:2019-09-12 09:13:17来源:IT技术作者:seo实验室小编阅读:64次「手机版」
 

香农熵

1. 香农熵(Shannon entropy)

信息熵(又叫香农熵)反映了一个系统的无序化(有序化)程度,一个系统越有序,信息熵就越低,反之就越高。

如果一个随机变量 X 的可能取值为 X={x1,x2,…,xn},对应的概率为 p(X=xi),则随机变量 X 的信息熵为:

H(X)=−∑i=1np(xi)logp(xi)

2. 相对熵(relative entropy)

所谓相对,自然在两个随机变量之间。又称互熵,Kullback–Leibler pergence(K-L 散度)等。设 p(x)q(x)X 取值的两个概率分布,则 pq 的相对熵为:

D(p||q)=∑i=1np(x)logp(x)q(x)

在一定程度上,熵可以度量两个随机变量的距离。KL 散度是两个概率分布 P 和 Q 差别的非对称性的度量。KL 散度是用来度量使用基于 Q 的编码来编码来自 P 的样本平均所需的额外的位元数。

典型情况下,P 表示数据的真实分布,Q 表示数据的理论分布模型分布,或 P 的近似分布。

相对熵的性质,相对熵(KL散度)有两个主要的性质。如下

  • (1)尽管 KL 散度从直观上是个度量或距离函数,但它并不是一个真正的度量或者距离,因为它不具有对称性,即

D(p||q)≠D(q||p)

  • (2)相对熵的值为非负值,即

    D(p||q)≥0

在证明之前,需要认识一个重要的不等式,叫做吉布斯不等式内容如下

这里写图片描述

这里提供一个离散型 KL 散度的简单实现:

from functools import reduce
import operator
import math

def kl(p, q):
    return reduce(operator.add, map(lambda x, y: x*math.log(x/y), p, q))

3. 交叉熵(cross entropy)

  • H(p,q)=−∑xp(x)logq(x)

相关阅读

【机器学习】【决策树】用样本集详解并计算:信息+香农

首先信息、香农熵、条件熵、信息增益都是信息论里面的概念。本文章的讲解和代码实现(除了条件熵和信息增益)都基于两个随机变量的样

信噪比/香农公式

信噪比就是信号的平均功率和噪声的平均功率之比,即:S/N。 用分贝(dB)作为度量单位,即:信噪比(dB)= 10 * log10(S/N) (dB) 例如:当S/N=10

分享到:

栏目导航

推荐阅读

热门阅读