必威体育Betway必威体育官网
当前位置:首页 > IT技术

FFT算法(Java实现)

时间:2019-09-02 19:42:14来源:IT技术作者:seo实验室小编阅读:82次「手机版」
 

fft算法

FFT导论

转载自FFT导论


  • FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。
  • 有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。

FFT物理意义

  • 一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍。采样得到的数字信号,就可以做FFT变换了。

  • N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次幂。

  • 假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模,就是该频率值下的幅值。

  • 具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。

  • 第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:

Fn=(n-1)*Fs/N。

  • 由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。**如果要提高频率分辨力,则必须增加采样点数,也即采样时间。**频率分辨率和采样时间是倒数关系。

假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是

An=sqrt(a^2+ b^2),

相位就是

Pn=atan2(b,a)

根据以上的结果,就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:

An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)

对于n=1点的信号,是直流分量,幅度即为A1/N。

由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。

实例说明

下面以一个实际的信号来做说明。假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:

S=2+3cos(2pi50t-pi30/180)+1.5cos(2pi75t+pi90/180)

式中cos参数为弧度,所以-30度和90度要分别换算成弧度。

我们以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。我们分别将这三个点附近的数据拿上来细看:

1点: 512+0i

2点: -2.6195E-14 - 1.4162E-13i

3点: -2.8586E-14 - 1.1898E-13i

50点:-6.2076E-13 - 2.1713E-12i

51点:332.55 - 192i

52点:-1.6707E-12 - 1.5241E-12i

75点:-2.2199E-13 -1.0076E-12i

76点:3.4315E-12 + 192i

77点:-3.0263E-14 +7.5609E-13i

很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。

接着,我们来计算各点的幅度值。分别计算这三个点的模值,结果如下:

1点: 512

51点:384

76点:192

按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来的幅度是正确的。

然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,

结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。

根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。

总结

假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。相位的计算可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。


java实现

转载自fft算法

仅为整理之用

public class FFT {

  int n, m;

  // Lookup tables. Only need to recompute when size of FFT changes.
  double[] cos;
  double[] sin;

  public FFT(int n) {
      this.n = n;
      this.m = (int) (Math.log(n) / Math.log(2));

      // Make sure n is a power of 2
      if (n != (1 << m))
          throw new runtimeexception("FFT length must be power of 2");

      // precompute tables
      cos = new double[n / 2];
      sin = new double[n / 2];

      for (int i = 0; i < n / 2; i++) {
          cos[i] = Math.cos(-2 * Math.PI * i / n);
          sin[i] = Math.sin(-2 * Math.PI * i / n);
      }

  }

  public void fft(double[] x, double[] y) {
      int i, j, k, n1, n2, a;
      double c, s, t1, t2;

      // Bit-reverse
      j = 0;
      n2 = n / 2;
      for (i = 1; i < n - 1; i++) {
          n1 = n2;
          while (j >= n1) {
              j = j - n1;
              n1 = n1 / 2;
          }
          j = j + n1;

          if (i < j) {
              t1 = x[i];
              x[i] = x[j];
              x[j] = t1;
              t1 = y[i];
              y[i] = y[j];
              y[j] = t1;
          }
      }

      // FFT
      n1 = 0;
      n2 = 1;

      for (i = 0; i < m; i++) {
          n1 = n2;
          n2 = n2 + n2;
          a = 0;

          for (j = 0; j < n1; j++) {
              c = cos[a];
              s = sin[a];
              a += 1 << (m - i - 1);

              for (k = j; k < n; k = k + n2) {
                  t1 = c * x[k + n1] - s * y[k + n1];
                  t2 = s * x[k + n1] + c * y[k + n1];
                  x[k + n1] = x[k] - t1;
                  y[k + n1] = y[k] - t2;
                  x[k] = x[k] + t1;
                  y[k] = y[k] + t2;
              }
          }
      }
  }
}

#使用说明

Usage Notes

This function replaces your inputs arrays with the FFT output.

Input

N = the number of data points (the size of your input array, must be a power of 2)
X = the real part of your data to be transformed
Y = the imaginary part of the data to be transformed

i.e. if your input is (1+8i, 2+3j, 7-i, -10-3i)

N = 4
X = (1, 2, 7, -10)
Y = (8, 3, -1, -3)

Output

X = the real part of the FFT output
Y = the imaginary part of the FFT output

相关阅读

设置response的Content-Disposition属性,实现文件下载

我们在开发web系统时有时会有以下需求:希望某类或者某已知MIME 类型的文件(比如:*.gif;*.txt;*.htm)能够在访问时弹出“文件下载”对

Java代码是怎么运行的?

《深入拆解Java虚拟机》学习笔记专栏地址:http://gk.link/a/1018S个人博客:http://laijianfeng.org Java 和 C++ 在运行方式上的区

java.lang包的简单介绍

java.lang包是Java语言的核心类库(lang是language的缩写),包括了运行Java程序必不可少的系统类,如基本数据类型、基本数学函数、字符

Java:详解Java中的异常(Error与Exception)

Java:详解Java中的异常(Error与Exception) 《Java:详解Java中的异常(Error与Exception)》 《Java:简述Java中的自定义异常》 《Ja

信息流广告投放,如何实现从0-1的破局

如果你不想因“投放无效”成为背锅侠,那么当你拿到一个看起来毫无头绪的案子时,不管甲方有无明确的投放方向、成熟的产品资料供你参

分享到:

栏目导航

推荐阅读

热门阅读