必威体育Betway必威体育官网
当前位置:首页 > IT技术

平均值(Mean)、方差(Variance)、标准差(Standard Deviation)

时间:2019-08-12 18:41:06来源:IT技术作者:seo实验室小编阅读:80次「手机版」
 

标准差

本文目录

    • 本文目录
    • 开篇明志
    • 平均值
    • 方差标准差
    • 为什么使用标准差
    • 贝赛尔修正
      • 公式的选择
    • 平均值与标准差的适用范围及误用


开篇明志

对于一维数据的分析,最常见的就是计算平均值(Mean)、方差(Variance)和标准差(Standard Deviation)。在做【特征工程】的时候,会出现缺失值,那么经常会用到使用 平均值 或者 中位数等进行填充。


平均值

平均值的概念很简单:所有数据之和除以数据点的个数,以此表示数据集的平均大小;其数学定义为

这里写图片描述

以下面10个点的cpu使用率数据为例,其平均值为17.2。

14 31 16 19 26 14 14 14 11 13

方差、标准差

方差这一概念的目的是为了表示数据集中数据点的离散程度;其数学定义为:

这里写图片描述

标准差与方差一样,表示的也是数据点的离散程度;其在数学上定义为方差的平方根:

这里写图片描述


为什么使用标准差?

与方差相比,使用标准差来表示数据点的离散程度有3个好处:

  1. 表示离散程度的数字与样本数据点的数量级一致,更适合对数据样本形成感性认知。依然以上述10个点的CPU使用率数据为例,其方差约为41,而标准差则为6.4;两者相比较,标准差更适合人理解。
  2. 表示离散程度的数字单位与样本数据的单位一致,更方便做后续的分析运算。
  3. 在样本数据大致符合正态分布的情况下,标准差具有方便估算的特性:66.7%的数据点落在平均值前后1个标准差的范围内、95%的数据点落在平均值前后2个标准差的范围内,而99%的数据点将会落在平均值前后3个标准差的范围内。

贝赛尔修正

在上面的方差公式和标准差公式中,存在一个值为N的分母,其作用为将计算得到的累积偏差进行平均,从而消除数据集大小对计算数据离散程度所产生的影响。不过,使用N所计算得到的方差及标准差只能用来表示该数据集本身(population)的离散程度;如果数据集是某个更大的研究对象的样本(sample),那么在计算该研究对象的离散程度时,就需要对上述方差公式和标准差公式进行贝塞尔修正,将N替换为N-1:

经过贝塞尔修正后的方差公式:

这里写图片描述

经过贝塞尔修正后的标准差公式:

这里写图片描述

公式的选择

是否使用贝塞尔修正,是由数据集的性质来决定的:如果只想计算数据集本身的离散程度(population),那么就使用未经修正的公式;如果数据集是一个样本(sample),而想要计算的则是样本所表达对象的离散程度,那么就使用贝塞尔修正后的公式。在特殊情况下,如果该数据集相较总体而言是一个极大的样本 (比如一分钟内采集了十万次的IO数据) — 在这种情况下,该样本数据集不可能错过任何的异常值(outlier),此时可以使用未经修正的公式来计算总体数据的离散程度。


平均值与标准差的适用范围及误用

大多数统计学指标都有其适用范围,平均值、方差和标准差也不例外,其适用的数据集必须满足以下条件:

中部单峰:

  1. 数据集只存在一个峰值。很简单,以假想的CPU使用率数据为例,如果50%的数据点位于20附近,另外50%的数据点位于80附近(两个峰),那么计算得到的平均值约为50,而标准差约为31;这两个计算结果完全无法描述数据点的特征,反而具有误导性。

  2. 这个峰值必须大致位于数据集中部。还是以假想的CPU数据为例,如果80%的数据点位于20附近,剩下的20%数据随机分布于30~90之间,那么计算得到的平均值约为35,而标准差约为25;与之前一样,这两个计算结果不仅无法描述数据特征,反而会造成误导。

遗憾的是,在现实生活中,很多数据分布并不满足上述两个条件;因此,在使用平均值、方差和标准差的时候,必须谨慎小心。


如果数据集仅仅满足一个条件:单峰。那么,峰值在哪里?峰的宽带是多少?峰两边的数据对称性如何?有没有异常值(outlier)?为了回答这些问题,除了平均值、方差和标准差,需要更合适的工具和分析指标,而这,就是中位数、均方根、百分位数和四分差的意义所在。

相关阅读

标准差公式中,分母是"n"还是"n-1"?

一组数据,求其标准差,用除以n的那个。注意,这组数据是我们研究的全部,即总体。 如果我们研究的是总体,总体的规模很大甚至无穷,我们对

[统计学理论基础] 协方差与相关系数

1 协方差 二维随机变量(X,Y),X与Y之间的协方差定义为: Cov(X,Y)=E{[X-E(X)][Y-E(Y)]} 其中:E(X)为分量X的期望,E(Y)为分量Y的期望 协方

协方差,协方差矩阵,相关系数

1.协方差定义:X,Y为两个随机变量,则它们的协方差值为:这个公式的推导很简单,                                   

standard.jar和jstl.jar的下载地址

http://repo2.maven.org/maven2/javax/servlet/jstl/ http://repo2.maven.org/maven2/taglibs/standard/ 一般我们都去maven的仓

方差、标准差、均方差、均方误差区别总结

转载  Leyvi_Hsing的博客  https://blog.csdn.net/Leyvi_Hsing/article/details/54022612 一、百度百科上方差是这样定义的:

分享到:

栏目导航

推荐阅读

热门阅读